
All you need to know about
Position-Independent Code and

Data (PIC and PID)

Agenda

Position-independent code and data

Systems with multiple images

Challenges in this environment

Demonstration

Q&A

Position-independent code and data

The Basics

Position independent code

• Absolute code
– Code placed at specific location in memory

• Position independent code (PIC) or position independedent
executables + Position independent data (PID)

– Code placed somewhere in memory

– Can be executed from any address

– Binary will not contain jumps to absolute address but rather it will use
program counter relative address

Support for PIC and PID

• ROPI = Read-Only Position
Independence.

– This concerns everything that is readonly in
the ELF output from the linker.

• RWPI = Read-Write Position
Independence.

– This concerns everything that is readwrite in
the ELF output from the linker.

• --pi_veneers (position independent
veneers, see the Development Guide
for further information)

Limitations with PIC and PID

• When PIC/ROPI is used, these limitations apply:
– C++ constructions cannot be used

– The object attribute __ramfunc cannot be used

– Pointer constants cannot be initialized with the address of another
constant, a string literal, or a function. However, writable variables can
be initialized to constant addresses at runtime.

• When PID/RWPI is used, these limitations apply:
– The object attribute __ramfunc cannot be used

– Pointer constants cannot be initialized with the address of a writable
variable.

Systems with multiple images

Separately built Protocol Stacks

• Protocol stacks may be provided by silicon vendors for their
microcontrollers.

– Pre-certified communications stacks for easy product certification

– No need to re-compile in project

• Can be extensive source bases.

• Silicon vendors may consider this proprietary IP.

Hardware

SoftDevice

Application

Application

drivers

SoftDevice

Manager

Bluetooth® low energy (BLE)

Protocol Stack

Example use case

SoftDevice API

SoC library

What is a SoftDevice?

- Precompiled hex file

- Programmed separately

- No link time dependency

It is located in reserved

memory space, which ensures

run time protection.

Changing data sets

• An application is kept stable while new data sets may be
updated or added

• Many applications may behave this way
– System that uses Map data may want to update the map data set

keeping the access mechanisms the same while the map data is
updated

– Media players may accept new media databases while player itself is
not changed

– These all fit model of simulating an attached file system where none
exists in a simple embedded system

Program loader

• Many systems designed to accept program modifications after shipment
– Initial system software loading

o All systems may use same program loader

o Different loaded application determines system personality

– Updating system firmware for many reasons

o Fix basic operating bugs

o Fix security holes

o Add new functionality
o Possibly on a fee-for-service basis

o Update loader firmware as well

Typical application flow

Power-On Reset

Interrupt vector table

Startup code

Device initialization

Application

Power-On Reset

Interrupt vector table

Startup code

Device initialization

“Program loader application”

Program loader flow

Possible use-cases for a program loader:

- Receive a new firmware package and

perform an update of the application (e.g.

OTA update)

- Switch between different applications based

on device settings (e.g. country variants, …)

- …

Program loader application

Initialize peripherals

Check for new Image

Read and Load New Image

Init Application Environment

Jump To Application

New

Image

To

Load?

Startup code

Application

Program loader + Application flow

Power-On Reset

Interrupt vector table

Startup code

Device initialization

“Program loader application”

Jump to application

Interrupt vector table

Device initialization

Power-On Reset

Duplicate low level

device initialization might

lead to issues (e.g. re-

configuration of a

running watchdog)

Debugging multiple image loading

• Debugger optionally loads multiple
images

• Specify file location and optional offset

• Must be a recognized program image
file

• Optionally only load debug information
– If image already in Flash

– Only want symbols for debug purposes

Things that user MUST manage

• Vector table location
– Loader has its own Vector Table

o Interrupts used for program loading etc.

o Likely located at the “default” vector table location for this chip

– Application must have its own vector table located in application Flash
memory range
o May use some of same interrupts and exceptions as loader

o Needs its own handlers. Conditions may not be the same

o SysTick, NMI, Hard Fault etc.

– __iar_data_init3() must be called for proper RTL initialization

Loader setup to “see” application

Application Setup

• Application linker config file.
– Edited in Linker configuration options in

IDE for Vector table start address and
Flash memory range

• Vector table set at start of
application Flash Block

• Flash block set at 0x08008000
rather than 0x08000000

Challenges in this environment

What if we have multiple app versions?

Power-On Reset

Interrupt vector table

Startup code

Device initialization

“Program loader application”

Jump to application

App2

App1

App version?

What if we have multiple app versions?

• Instruct the compiler to generate
position independent application
binary.

• Build and install different versions
of the same app?

• Bootloader can decide which one to
jump to.

Demonstration

Summary

Summary
• Loading multiple project images for

debugging can be a powerful tool

• Several factors must be understood and

considered to make the environment work

correctly

• Once configured correctly, it can be used

over as a template for many projects

Thank you for your attention!

Questions? Reach out to fae@iar.com

More information is also available at iar.com

mailto:fae@iar.com
http://www.iar.com/ewarm

