
Single Chip micro Mote
SCµM-3C
User Guide

Lydia Lee, Fil Maksimovic, Alex Moreno, Kris Pister,
Titan Yuan, Brad Wheeler

Last Compiled October 1, 2019

Contents

1 Intro 5

2 Quick Start - Hello World 6

3 Where To Go For Resources and Help 6
3.1 GitHub . 7
3.2 Box . 7
3.3 BWRC Repo . 7
3.4 OpenWSN Repo . 7
3.5 JIRA . 7
3.6 EECS Repo . 7

4 Chip Overview 8
4.1 Analog Scan Chain . 9
4.2 Memory Mapped Registers . 10
4.3 Pads . 10
4.4 Voltage Domains . 12

5 PCB Overview 12

6 Electrical Specification 14

1

7 Bootloading 14
7.1 Optical Bootloading . 14
7.2 3-Wire Bus Bootloading . 16
7.3 Mote Startup . 16
7.4 Optical Boot Troubleshoot . 17

8 Misc Optical Bootload Related Items 17
8.1 Optical Data Transfer . 17
8.2 Optical Timing Transfer . 18
8.3 Lighthouse Localization Receiver 19
8.4 Future Feature Idea: Hardware IDs & Calibration Data 19
8.5 Future Feature Idea: RF Bootloader 19

9 GPIO 19

10 Interrupts 22

11 UART 23

12 SPI 24

13 Clock Configuration 24

14 Frequency Counters 24

15 Timers 24

16 LO, PA, and Divider Hardware Details 25
16.1 Analog Scan Chain . 25
16.2 Cortex Code . 27
16.3 Common Configurations . 28

16.3.1 Receive Mode (RF only) 28
16.3.2 Transmit Mode - 802.15.4 29
16.3.3 Transmit Mode - BLE 29

17 RF Receiver Analog Scan Chain 31
17.1 Mixer Bias . 31
17.2 Transimpedance Amplifiers . 32
17.3 Gain Control . 32

2

17.4 Filters . 33
17.5 ADC . 34
17.6 Clock Generation . 36
17.7 LDO and Reset . 36
17.8 Debug Path . 37

18 Power On Control 39
18.1 Aux Digital LDO . 41
18.2 Power Sequencing . 41
18.3 TX/RX Switching . 44

19 Digital Baseband 45
19.1 RSSI . 47
19.2 Link Quality Indicator . 47
19.3 Chip Rate Error Estimate . 47

20 Sensor ADC 48
20.1 Hardware . 48

20.1.1 LDO . 50
20.1.2 PTAT . 50
20.1.3 PGA . 51
20.1.4 ADC . 51

20.2 Initializing Analog Scan Chain 51
20.3 Triggering A Measurement . 52

20.3.1 On-Chip FSM . 53
20.3.2 GPIO Loopback . 53
20.3.3 External GPI . 54

20.4 Reading the Output . 54
20.4.1 Memory-Mapped Register 54
20.4.2 GPO Readout . 54

20.5 Debugging/Known Issues . 54
20.5.1 Supply Bounce . 54
20.5.2 First-Reading 511 . 55
20.5.3 MSB “Sticking” . 55

21 Raw Bit Receive Mode 56

3

22 802.15.4 Radio Demo Software 56
22.1 Overview . 56
22.2 CRC Check . 57
22.3 Initialize Analog Scan Chain 57
22.4 Optical Calibration . 57
22.5 Building a Channel Table . 57
22.6 Acquiring Packet Rate . 59
22.7 Frequency Management . 59
22.8 BSP-like Radio Control . 60
22.9 Hard-Wired Radio Connection 61

23 Optical Programmer Details 61

4

1 Intro

The goal of the Single Chip micro Mote project is to develop a complete self-
contained wireless sensor node on a single chip, including sensing, computa-
tion, communication, and power, with no external components. SCµM3C is
an important step along that path, containing everything needed for sens-
ing, computation, and communication. This includes a 32 bit Cortex M0
processor, 2.4 GHz radio transceiver, and both a temperature sensor and a
lighthouse location sensor. With a printed solar cell and battery, SCµM3C
would satisfy the project goal. SCµM3C is the product of graduate research
over a period of roughly six years by a core group of four students and a
postdoc, and an extended group that includes dozens of graduate and un-
dergraduate students and visiting scholars. The academic contributions are
featured in three doctoral dissertations [1, 2, 4] and one master’s thesis [3], as
well as an expanding number of research publications describing the crystal-
free approach [xxx], circuit design [xxx], and applications [xxx].

This User Guide is intended as a practical explanation of how to use
SCµM3C. Because the chip was designed by students learning new skills and
pursuing a research agenda, it has some quirks not found in typical produc-
tion silicon. There are often optional ways of doing things that were included
out of concern that new circuits would not work precisely as designed, and
many cases where legacy mechanisms were left in place because there simply
was not enough time to fix them. There are also a large number of debugging
pads and interfaces. And of course, not everything works.

Because this chip is a research project not a commercial product, the
documentation is not as well organized or complete as it might be. Work is
in progress to improve that situation. This document attempts to consolidate
information useful for operating and debugging on SCM-3C.

For Your Safety: As discussed later in the opti-
cal bootloading section, be careful with the optical
programmers! They use high intensity infrared non-
visible light which can damage eyes and skin at very
short distances or long exposure times.

5

For SCM’s Safety: Take precautions against ESD by
grounding yourself before handling SCM. If you are
applying external connections be sure to adhere to
the maximum voltage ratings which differ depending
on the pin. Take precautions to avoid scratching the
epoxy covering the chip as this can degrade optical
programming if the photodiode is obscured.

2 Quick Start - Hello World

The TL;DR version of this guide. Each of the following steps are described
in detail in this guide and the mentioned references. A high level summary
of the steps to get started running code on SCM are:

• Download and install ARM Keil (see [3]).

• Download example software from GitHub (see Section 3.1).

• Download bootloader script from GitHub (see Section 3.1).

• Update bootloader script with COM port and binary file path.

• Obtain a SCM-3C test PCB.

• Obtain an optical programmer PCB and Teensy with correct firmware.

• Plug both boards in via USB and open a COM port to SCM.

• Align the programmer and execute the bootload script.

• SCM should print over UART and toggle its GPIOs.

3 Where To Go For Resources and Help

Documentation, code, and source files are located in several different places
which are listed below.

6

3.1 GitHub

Software for version 3C is hosted on GitHub or here: https://github.com/
PisterLab/scum-test-code

3.2 Box

Bootloader scripts, Teensy bootloader firmware, scripts for utilizing scan
chains, and PCB documentation can be found on Box in the uRobots/SCM 3C
folder. Documentation can also be found in this folder. A detailed descrip-
tion of the Cortex-M0 and its associated digital blocks can be found in [3].
The hardware implementation of the radio and optical receivers is detailed
in [4]. The RF local oscillator, transmitter, and divider are discussed in [2].
Clocks, POR, and reset logic are discussed in [1]. A useful book describing
various aspects of the ARM Cortex-M0 can be found here [5]. Permission to
access this folder must be given by someone within the group.

3.3 BWRC Repo

The source Verilog and digital synthesis flow used to create the SCM ASIC
are located in this repo which is private due to IP restrictions. This repo,
the analog portion of the design, and the final GDS reside on BWRC servers.

3.4 OpenWSN Repo

The OpenWSN repo which supports SCM can be found here: https://

github.com/openwsn-berkeley/openwsn-fw

3.5 JIRA

JIRA was used for bug tracking during tapeouts and contains historical de-
tails of issues and the status of their resolution: https://openwsn.atlassian.
net/projects/SCUM/issues

3.6 EECS Repo

Some software still resides in the EECS Repo which was where software
was stored at the beginning of the project: repo.eecs.berkeley.edu/git/
projects/pistergroup/singlechip-digital.git

7

https://github.com/PisterLab/scum-test-code
https://github.com/PisterLab/scum-test-code
https://github.com/openwsn-berkeley/openwsn-fw
https://github.com/openwsn-berkeley/openwsn-fw
https://openwsn.atlassian.net/projects/SCUM/issues
https://openwsn.atlassian.net/projects/SCUM/issues
repo.eecs.berkeley.edu/git/projects/pistergroup/singlechip-digital.git
repo.eecs.berkeley.edu/git/projects/pistergroup/singlechip-digital.git

VDDD_LDO_OUT
VDDD_DISABLE
VDD_AUX_LDO_OUT
GND
ASC_EXT_OVERRIDE
ASC_IN
ASC_LOAD
ASC_OUT
ASC_PHI1
ASC_PHI2
VBAT
BOOT_SOURCE_SELECT
HARD_RESET
VBAT
GND
GPO_ZERO
LF_EXT_CLK
GND
ADC_INPUT
ADC_LDO_OUTPUT

VD
D_

DI
VI

DE
R

VB
AT

GN
D

IF
_D

BG
_I

N
_I

N
IF

_D
BG

_O
U

T_
IN

IF
_D

BG
_O

U
T_

IP
IF

_D
BG

_I
N

_I
P

GN
D

IF
_L

DO
_O

U
T

GP
IO

<0
>

GP
IO

<1
>

GP
IO

<2
>

GP
IO

<3
>

GP
IO

<4
>

GP
IO

<5
>

GP
IO

<6
>

GP
IO

<7
>

VD
DI

O
GP

IO
<8

>
GP

IO
<9

>
GP

IO
<1

0>
GP

IO
<1

1>
GP

IO
<1

2>
GP

IO
<1

3>
GP

IO
<1

4>
GP

IO
<1

5>
GN

D
Rs

Tx
(U

AR
T

O
U

T)
Rs

Rx
(U

AR
T

IN
)

BO
O

T_
3W

B_
CL

K
BO

O
T_

3W
B_

LA
TC

H
BO

O
T_

3W
B_

DA
TA

VBAT
GND

IF_DBG_IN_QP
IF_DBG_OUT_QP
IF_DBG_OUT_QN

IF_DBG_IN_QN
VDD25

GND
VDD_ALWAYSON_DISABLE

IF_EXT_CLK
GND

RF INPUT
GND

VBAT
PA_LDO_OUT

RF DIVIDER OUTPUT
MODULATION INPUT

MOD CLK INPUT
LO_LDO_OUT

BANDGAP OUT

AL
W

AY
SO

N
_L

DO
_O

U
T

VD
DD

_L
DO

_O
U

T

SO
FT

_R
ES

ET

HC
LK

 B
AC

KU
POptical Bootloader

Photodiode
(green rectangle)

Figure 1: Die photo of SCM-3C with pad labels. Dimensions are 3mm ×
2mm× 0.3mm.

4 Chip Overview

SCµM-3C is a 3x2x0.3 mm3 silicon chip made in the TSMC 65nm LP RF MS
CMOS process (Figure 1). It contains approximately 8 million transistors.
SCµM-3C has 64 kB of program SRAM memory (IMEM) and 64 kB of data
SRAM memory (DMEM). There are also 16 kB of program ROM which
contain a bootloader. The process does not offer any writeable non-volatile
storage, so every time that power is removed from the chip, both the program
and data are lost.

Loading program memory can be done either optically or via a wired
connection, as described in section 7. Once program memory is loaded, the
chip needs to be configured for the desired functionality. SCµM-3C has a
tremendous amount of configurability, most of which is not of interest to
most users. For example, there are eight voltage regulators on the chip, each

8

Figure 2: The Analog Scan Chain.

with a tunable output voltage. Except in rare circumstances, most of these
should simply be configured to the recommended setting. Some small subset
of the configurable parameters is of high importance to users, such as the
radio oscillator frequency or the processor clock speed.

Configuration bits control, for example, enabling and voltage settings on
LDOs, LC oscillator frequency, which oscillators are connected to which clock
lines, and how the chip’s pads are connected to internal inputs and outputs.
Configuration bits are controlled with a combination of the Analog Scan
Chain (ASC) and Memory Mapped Registers (MMR).

4.1 Analog Scan Chain

The ASC is a shift register with 1201 bits that contains almost all of the
configuration information for the chip. Changing configuration with the ASC
requires that the entire desired sequence of bits be shifted into position and
then loaded in parallel into control registers for the various operational units
on the chip (Figure 2. This process can be accomplished either from off-
chip through six pads on the East side of the chip, or via software on the

9

VBATGlobal chip supply - nominally 1.5VGPIO<8>Input/output from GPIO mux bankGNDGlobal ground GPIO<9>Input/output from GPIO mux bankIF_DBG_IN_QPQ channel debug outputs for receiverGPIO<10>Input/output from GPIO mux bankIF_DBG_OUT_QPQ channel debug outputs for receiverGPIO<11>Input/output from GPIO mux bankIF_DBG_OUT_QNQ channel debug outputs for receiverGPIO<12>Input/output from GPIO mux bankIF_DBG_IN_QNQ channel debug outputs for receiverGPIO<13>Input/output from GPIO mux bankVDD25Supply for receiver debug outputs - 2.5VGPIO<14>Input/output from GPIO mux bankGNDGlobal ground GPIO<15>Input/output from GPIO mux bankVDD_ALWAYSON_DISABLEDisables the scan chain and optical LDO GNDGlobal ground IF_EXT_CLKExternal clock input to receiver basebandRsTx (UART OUT)UART output GNDRF ground - all grounds are connected togetherRsRx (UART IN)UART inputRF INPUT2.4 GHz RF padBOOT_3WB_CLK3wb booload clockGNDRF ground - all grounds are connected togetherBOOT_3WB_LATCH3wb enable/latch VBATGlobal chip supply - nominally 1.5VBOOT_3WB_DATA3wb data inputPA_LDO_OUTOutput of transmitter PA LDOVDDD_LDO_OUTOutput of microprocessor LDORF DIVIDER OUTPUTOutput of RF dividerVDDD_DISABLEPull low to disable on-chip LDOMODULATION INPUTInput for digital RF modulationVDD_AUX_LDO_OUTOutput of aux digital LDOMOD CLK INPUTInput for digital RF modulation clockGNDGlobal ground LO_LDO_OUTOutput of local oscillator LDOASC_EXT_OVERRIDEPull to VDDD to use external ASC pinsBANDGAP OUTOutput of bandgap referenceASC_INAnalog scan chain inputVDD_DIVIDEROutput of RF divider LDOASC_LOADAnalog scan chain loadVBATGlobal chip supply - nominally 1.5VASC_OUTAnalog scan chain outputGNDGlobal ground ASC_PHI1Analog scan chain clock phase 1IF_DBG_IN_INI channel debug outputs for receiverASC_PHI2Analog scan chain clock phase 2IF_DBG_OUT_INI channel debug outputs for receiverVBATGlobal chip supply - nominally 1.5VIF_DBG_OUT_IPI channel debug outputs for receiverBOOT_SOURCE_SELECTPull to VDDD to use 3wb bootloadIF_DBG_IN_IPI channel debug outputs for receiverHARD_RESETCortex hard reset - active low - internal pullupGNDGlobal ground VBATGlobal chip supply - nominally 1.5VIF_LDO_OUTOutput of receiver LDOGNDGlobal ground GPIO<0>Input/output from GPIO mux bankGPO_ZEROHard-wired directly to Cortex GPO<0>GPIO<1>Input/output from GPIO mux bankLF_EXT_CLKExternal clock input to CortexGPIO<2>Input/output from GPIO mux bankADC_INPUTAnalog to digital converter inputGPIO<3>Input/output from GPIO mux bankADC_LDO_OUTPUTOutput of ADC LDOGPIO<4>Input/output from GPIO mux bankALWAYSON_LDO_OUTOutput of LDO that runs scan chain and opticalGPIO<5>Input/output from GPIO mux bankVDDD_LDO_OUTOutput of microprocessor LDOGPIO<6>Input/output from GPIO mux bankHCLK BACKUPPull to VDDD to switch to backup oscillatorGPIO<7>Input/output from GPIO mux bankSOFT_RESETCortex soft reset - active low - internal pullupVDDIOSupply for GPIO pads - Max 3.3V

Figure 3: Pad Descriptions

microprocessor. By default, the processor is in control of the ASC.
At boot, the ASC registers default to all 0. Since some of the functional

units that they control need to have non-zero values during boot, this can
lead to some unusual coding of control words, but most of this is hidden
from the user by a collection of functions designed to simplify interface to
the ASC. For example, the VDDD, AUX DIGITAL, and VDD ALWAYS ON
voltage regulators invert the top two bits of their control word so that they
are biased relatively high at boot. The ASC interface functions XXX() take
this into account.

Programming the ASC requires several milliseconds, as the entire 1201
bit sequence must be shifted into the scan chain, and each bit requires several
clock cycles to shift. For many operations, this is painfully slow, so a faster
control mechanism is provided via memory mapped registers. Often the
control authority selection between ASC and MMR is yet another ASC bit,
as shown in Figure 2.

4.2 Memory Mapped Registers

4.3 Pads

As shown in Figure 1 there are pads on three sides of the chip, known for
convenience as West, South, and East. Most of the East and West pads are
for debugging purposes. One notable exception is the antenna pad on the
West side, labeled RF INPUT. For size-constrained applications, this can be
wire bonded to any floating pad on the chip, such as ASC PHI1.

Supply pads with the same name are wired together on chip, and no
issues have been found which would indicate that more than one bond wire
is needed for VBAT (5 pads) or GND (9 pads). There are two separate pad
voltage domains. VDDIO is used as the pad ESD and IO voltage domain
for all of the GPIO, UART, and BOOT pads, all of which form a continuous
line on the South side of the chip. All other pads use VBAT for ESD, and
use a mix of VDDD and VBAT for the IO voltage. The specifics for each
pad are in xxx-document.

The minimum number of pads that must be connected to boot the mote
is two: VBAT and GND. For roughly half of the chips, the optical boot

10

Pad Name Voltage Domain Protection comment
GND
VBAT
VDDIO
RF INPUT
GPIO VDDIO VDDIO
UART VDDIO VDDIO
3WB VDDIO VDDIO
ADC INPUT
GPO0
HARD RESET
BOOT SOURCE SELECT
Less likely to be used by applications
VDD25
IF *
* LDO OUT
RF DIVIDER OUT
MOD CLK INPUT
BANDGAP OUT
VDD DIVIDER
LF EXT CLK
ASC *
VDDD *

Table 1: Common pads and their IO voltage and protection voltage domains.

11

Domain leakage powers
VDDD 80 Cortex, RAM
AlwaysOn 45 Optical receiver
LO 13
Sensor ADC 12
Aux Digital 8
IF
PA TX power amplifier

Table 2: Voltage domains

sequence described below will work with just these two pins connected. For
the other half, VDDD LDO OUT must be briefly raised to VBAT in order
for the chip to boot. Exact reason and timing are under investigation.

For wired bootloading, the minimum number of pads is six: VBAT, VD-
DIO, GND, and the three wire bus: BOOT 3WB CLK, BOOT 3WB DATA,
and BOOT 3WB LATCH. VDDIO may not be needed - this is still under
investigation.

To make a minimal BLE or 802.15.4 transmitter sending data from the
on-board temperature or lighthouse sensors, the antenna pad must also be
connected. With a 3 mm wirebond across the chip, the antenna loss is
approximately -25 dBi [xxx].

4.4 Voltage Domains

There are eight different voltage domains and five different bandgap refer-
ences feeding them.

5 PCB Overview

The first implementation of the 3C software development board is shown in
Figure 4. The SCM chips are packaged into QFN-100 packages from Quik-
Pak to make them replaceable, reduce the board cost (relaxed trace/space),
and to speed up board assembly. The PCBs use ENIG surface treatment so
it is possible to directly wirebond to them although the bonds and angles can
get rather extreme due to the large QFN landing. The boards also include a
SMA connector to ease RF testing, all GPIOs broken out on 0.1” headers, and

12

Figure 4: SCM-3C Software Development PCB

UART/USB conversion. The boards are powered via the 5V USB connection
and a 1.5V LDO is included to generate VBAT for SCM (with an inline
jumper to make it easier to measure current). The FTDI UART/USB chip
generates a 3.3V supply internally which can be used for VDDIO. A zero-ohm
jumper on the board determines whether VDDIO on SCM is connected to
the 3.3V or 1.5V supply domain. The Teensy header and ASC level shifters
are not used since the analog scan chain can be controlled from the Cortex
on chip and optical bootload is easier than wired programming. A future
board revision could be made smaller by removing the Teensy header and
level shifters as well as moving the UART/USB bridge off board - perhaps
instead to one of FTDIs cable-based solutions. The back side of the PCB
also has footprints included for an Invensense IMU (should support either the
MPU-9250 or newer ICM-20948), a ADT7302 SPI temperature sensor, and
a LTC4123 wireless battery charger. There is also a footprint for attaching
a coin cell battery holder.

13

6 Electrical Specification

7 Bootloading

There are two bootload modes: optical and wired. The mote defaults to
optical bootload mode which requires no external connections. The “boot-
load source select” pin is used to switch the mote to wired mode. This pin is
internally pulled to ground selecting optical mode, and should be driven high
(either to VDDD or VBAT) to select wired boot mode. See Appendix B in
[4] for hardware details on the on-chip optical receiver. See [3] for details on
the 3-wire bus mode.

7.1 Optical Bootloading

WARNING

The optical programmer uses a high intensity OSRAM SFH4555 non-
visible infrared LED which outputs enough power to cause eye and skin
damage at short range or prolonged exposure. As a general safety rule,
always treat the programmer as if it were active, even when you know it
is not. A visible red warning LED is included on the transmitter PCB to
indicate when power is applied to the LED driver. It is recommended to
turn off power to the transmitter Teensy when not in use.

For the approximately 1s duration of programming when the LED
is active, the minimum safe distance is about 3 cm. A standoff is rec-
ommended to physically prevent getting closer than this to the LED. A
section of a straw serves the purpose well and also provides a guide for
aiming the LED at the chip.

Both optical and wired programming use a Teensy 3.6 for the programmer.
The same Arduino firmware is used for both modes and is available on Box.
When flashing the Teensy with code it is best to only have one Teensy plugged
in at a time to ensure you are programming the correct device. Both MAT-
LAB and Python are supported for transferring a compiled binary from Keil
(the .bin file) to the Teensy which then programs the mote. The program-
ming scripts are available on Box and should be updated with the appropri-

14

ate COM port and path to the binary file. Flags set which bootload mode
is used. The script also optionally allows for adding CRC checking to ensure
the integrity of the software payload after it is transferred over optical into
SRAM. The Keil project for SCM must include support for CRC checking
(see software in git repo) as the length and CRC are written to memory loca-
tions that are predefined in the software. The bootloader script also has flags
for choosing to fill unused program memory with zeros or random data. This
can be useful for checking for errors during programmed or checking that
SRAM is fully functional. The choice of skipping hard reset during optical
program is also set via a script flag.

The optical transmitter is best used at distances < 5cm with care taken
to align the IR LED to the mote due to its ±5 degree half angle. The diode/s-
traw of the optical programmer should be roughly aimed at the photodiode
on the chip which is annotated as the small black rectangle in Figure 1. De-
tails on the optical programmer PCB can be found in Section 23 and the
PCB source files are available on Box. The presence of epoxy covering the
chip wirebonds appears to slightly reduce the distance that the chip can be
reliably programmed. Care should be taken to avoid damaging the epoxy
above the chip or allowing the photodiode to be obstructed in any way. If
difficulties are encountered when programming, try adjusting the position or
vertical height of the programmer. A “helping hands” solder holder is very
convenient for positioning the programmer.

The programmer will send a preamble to allow the on-chip receiver to
settle, then send a start symbol, followed by dummy data to wait for hard
reset to execute, and then the binary program data encoded with 4B/5B.
The on-chip optical receiver will wait to recognize the start symbol and will
issue a hard reset to get the chip to re-execute its ROM. The receiver will
then decode the data, convert it to the same format as 3-wire bus, and load
the program data into SRAM. Consult [4] for further details on the on-chip
optical receiver.

The programmer provides the option of whether or not to issue a hard
reset to the chip prior to bootloading. For including a hard reset, the start
symbol is the sequence [169 176 167 50]. For skipping the hard reset the start
symbol is [184 84 89 40]. If the reset is skipped then no dummy data is sent.

15

7.2 3-Wire Bus Bootloading

The wired mode requires three wires (data, clk, latch) and is henceforth re-
ferred to as 3wb for 3-wire bus. If the mote has already been programmed
once then access to Hard Reset is also needed to re-execute the boot ROM.
Alternatively, power cycling will also re-execute the ROM. To switch to
3wb mode the BOOTLOAD SOURCE SELECT pin must be pulled high
to VBAT. A jumper position is provided on the PCB for this purpose. Note
that pulling this pin high also disables the optical receiver analog frontend.

The same Teensy 3.6 microcontroller and firmware is used for 3wb boot-
loading. The clock, data, latch, and hard reset pins should be connected to
their respective pins on SCM. Level-shifters are not required for clock, data,
and latch on 3C whereas they were on earlier versions. The hard reset pin
on SCM however will not tolerate 3.3V so either a level shifter is required or
the Teensy should be configured as an open drain output for that pin (since
the chip has an internal pullup). A compiled binary is loaded onto the mote
using the same MATLAB or Python scripts which interface to the Teensy.

7.3 Mote Startup

When the mote first boots up it executes the following steps from ROM:

• Set BOOT MODE to 3wb

• Assert GPIO-0 high

• Wait until 64 kB have been written to IMEM via 3wb interface

• Set BOOT MODE to none (regular execution)

• Switch instruction execution from ROM to RAM

• Issue a soft reset

After soft reset has finished the mote should be running the software
that was bootloaded into RAM. A useful troubleshooting step for debugging
startup is to see if GPIO-0 is high. If it is then the mote is likely waiting to
be bootloaded. If not, then something went wrong with the startup process.
Other useful debug steps are to check that HCLK is coming out GPIO¡12¿
and that both hard (GPIO¡13¿) and soft (GPIO¡14¿) resets are high. It is
recommended to consult [3] for further details.

16

7.4 Optical Boot Troubleshoot

More often than not when optical programming is being problematic the
issue is alignment or distance related. Moving the programmer slightly and
trying a few times is generally enough to resolve the issue. If problems persist
then make sure there is nothing obstructing the photo diode. Take care to
not make contact with the epoxy covering the chip as it can become marred
and lead to issues with light reaching the photo diode.

A more detailed debugging step involves looking at the signals coming
out of the optical receiver through the GPIO bank. When the mote first
boots up it defaults to GPIO bank 0 which outputs OPTICAL CLK RAW
and OPTICAL DATA RAW. Observing these two signals at the same time
will shed some light on whether the alignment is correct. These signals
should be time shifted versions of one another and the width of the narrow
pulses should be shorter than the time shift between the two traces. Another
debugging step is to check whether Hard Reset is being asserted during the
programming process. If Hard Reset is occurring then at least some of the
bits are being properly received but perhaps not the entire 64 kB is error free.
If there is no Hard Reset then either something else is wrong or the alignment
is so poor that even the first 32 bits are not being properly received.

It is possible to adjust the pulse width parameters that the Teensy uses
when flashing the programming LED. Figure 5 shows the parameters that are
used to set the on and off times for one and zero data bits. These values are
passed to the Teensy in the bootloader script using the command ’configopt’
followed by four integer values. These values are used as a for loop index
that ultimately determines how wide each pulse is. The values {80,80,3,80}
were determined experimentally to work relatively well but are unlikely to
be optimum. The third value is likely to be the most beneficial to tweak as
it determines the width of the zero bit pulse, which is the most critical for
achieving error free operation.

8 Misc Optical Bootload Related Items

8.1 Optical Data Transfer

The optical receiver also provides a mechanism for wirelessly sending data
to the mote after it has been programmed. Bits received over optical are
clocked into a 32-bit shift register and an interrupt called “optical irq in”

17

Figure 5: Variables describing pulse width properties of the Teensy optical
transmitter.

is asserted every 32 new bits. A SFD (start frame delimiter) of [221 176
231 47] is also available to help synchronize the mote to the data sequence
to be transferred. When the 32-bit register matches this value, a separate
interrupt called “optical sfd interrupt” is asserted. By first waiting for the
SFD interrupt and then reading the new data every time the “optical irq in”
IRQ executes, one can send commands or transfer arbitrary amounts of data
to the mote and have it stored in DMEM.

analog_rdata[335:304] = Optical 32-bit Register

8.2 Optical Timing Transfer

Since the mote needs programmed every time it loses power, bootloading
provides an opportunity to also provide initial timing calibration. That can
be accomplished by sending the optical SFD sequence at a fixed rate after
bootload has completed. This will cause the optical SFD interrupt to go
off at a known rate which can be used to calibrate the clocks on chip. The
timing interval of the interrupt is based on the crystal-based Teensy clock
and is thus much more accurate than SCM.

18

8.3 Lighthouse Localization Receiver

The optical receiver on SCM can also be used at limited range to receive
localization pulses from a HTC Lighthouse. A demo of this capability is
included in the Git repo.

8.4 Future Feature Idea: Hardware IDs & Calibration
Data

While SCM has no hardware support for permanently setting identifying
addresses on a per-node basis, this functionality could be added to the boot-
loader script. In the same way that the CRC is calculated and then inserted
at a known memory location in the payload, an unique identifying address
could be inserted during the programming process for individual nodes. The
same technique could be used for inserting calibration tables into memory if
desired.

8.5 Future Feature Idea: RF Bootloader

While not officially implemented or even attempted, it may be possible to
implement an RF reprogramming capability by executing instructions out of
data memory. The FPGA version of SCM will execute from DMEM but with
strange behavior. The memory instantiations are not identical between ASIC
and FPGA versions so it is possible that the ASIC version behaves differently
when executing from DMEM (Modelsim indicates this is the case). If the
ASIC version is capable of executing from DMEM, then it may be possible to
copy new binary data into DMEM from whatever source desired, ie over the
air via the radio, and then transfer execution to those new instructions. Note
that using DMEM is required since IMEM becomes read-only after the initial
bootload process. Also note that the mote would first need programmed with
software to support this functionality so its utility is limited (ie this won’t
let you RF bootload from cold startup).

9 GPIO

1 % GPIO Direction Control

2 % 1 = output, 0 = input

19

3 % out_mask<0:15> = gpio_direction;

4 % in_mask<0:15> = 1 - gpio_direction;

5

6 % On-chip mapping is:

7 % out_en<0:15> = ASC<1131>,ASC<1133>,ASC<1135>,ASC<1137>,

8 % ASC<1140>,ASC<1142>,ASC<1144>,ASC<1146>,

9 % ASC<1115>,ASC<1117>,ASC<1119>,ASC<1121>,

10 % ASC<1124>,ASC<1126>,ASC<1128>,ASC<1130>

11

12 % in_en<0:15> = ASC<1132>,ASC<1134>,ASC<1136>,ASC<1138>,

13 % ASC<1139>,ASC<1141>,ASC<1143>,ASC<1145>,

14 % ASC<1116>,ASC<1118>,ASC<1120>,ASC<1122>,

15 % ASC<1123>,ASC<1125>,ASC<1127>,ASC<1129>

16

17 ASC(1131:2:1137) = 1 - out_mask(1:4); //Outputs are active low

18 ASC(1140:2:1146) = 1 - out_mask(5:8);

19 ASC(1115:2:1121) = 1 - out_mask(9:12);

20 ASC(1124:2:1130) = 1 - out_mask(13:16);

21

22 ASC(1132:2:1138) = in_mask(1:4); //Inputs are active high

23 ASC(1139:2:1145) = in_mask(5:8);

24 ASC(1116:2:1122) = in_mask(9:12);

25 ASC(1123:2:1129) = in_mask(13:16);

20

Ba
nk

 0
 (D

ef
au

lt
at

 P
O

N
)

Ba
nk

 1
Ba

nk
 2

Ba
nk

 3
Ba

nk
 4

Ba
nk

 5
Ba

nk
 6

Ba
nk

 7
B

an
k

8
B

an
k

9
B

an
k

10
B

an
k

11
B

an
k

12
B

an
k

13
B

an
k

14
B

an
k

15

D
_O

U
T<

0>
O

P
TI

C
A

L_
C

LK
AD

C_
CL

K
AD

C_
CL

K
AD

C_
CL

K
m

ux
_o

ut
_M

0_
da

ta
 ("

m
ux

_o
ut

_M
0_

db
bd

at
a"

)
S

S
_d

et
ec

te
d

C
O

R
TE

X
_G

P
O

<0
>

D
IV

_O
U

T<
0>

AD
C_

CL
K_

rin
g

R
FT

IM
E

R
_C

LK
co

un
te

r1
5

FR
E

Q
_C

O
N

TR
_W

O
R

D
FR

E
Q

_A
V

G
 0

C
O

U
N

T

D
_O

U
T<

1>
O

P
TI

C
A

L_
D

A
TA

CL
K_

64
dt

au
g_

de
bu

<1
>

AD
C_

C1
m

ux
_o

ut
_M

0_
cl

k
("

m
ux

_o
ut

_M
0_

db
bc

lk
")

en
d_

of
_p

ac
ke

t
C

O
R

TE
X

_G
P

O
<1

>
D

IV
_O

U
T<

1>
m

ux
_o

ut
_a

dc
_r

es
et

H
C

LK
14

FR
E

Q
_C

O
N

TR
_W

O
R

D
FR

E
Q

_A
V

G
C

O
U

N
T

D
_O

U
T<

2>
O

P
TI

C
A

L_
C

LK
_R

A
W

IF
_R

ST
dt

au
g_

de
bu

<2
>

AD
C_

C2
C

LK
_R

X
_E

N
ag

c_
do

ne
C

O
R

TE
X

_G
P

O
<2

>
D

IV
_O

U
T<

2>
m

ux
_o

ut
_a

dc
_c

on
ve

rt
G

FS
K

_C
LK

13
FR

E
Q

_C
O

N
TR

_W
O

R
D

FR
E

Q
_A

V
G

C
O

U
N

T

D
_O

U
T<

3>
O

P
TI

C
A

L_
D

A
TA

_R
A

W
dt

au
g_

de
bu

<3
>

AD
C_

C3
C

H
IP

S
_O

U
T

("
C

H
IP

S
_O

U
T_

M
0"

)
up

da
te

_d
at

a
C

O
R

TE
X

_G
P

O
<3

>
D

IV
_O

U
T<

3>
m

ux
_o

ut
_a

dc
_p

ga
_a

m
pl

ify
E

X
T_

C
LK

_G
P

IO
 (e

xt
er

na
l c

lk
 o

ut
0)

12
FR

E
Q

_C
O

N
TR

_W
O

R
D

FR
E

Q
_A

V
G

C
O

U
N

T
(fr

om
 c

or
te

x)
FR

E
Q

_C
O

N
TR

_W
O

R
D

D
_O

U
T<

4>
SL

EE
PI

N
G

AG
C_

O
U

T<
1>

I_
BP

F_
AD

C<
1>

AD
C_

PH
I1

P
O

N
_L

O
C

O
R

TE
X

_G
P

O
<4

>
G

FS
K

_O
U

T<
0>

2M
H

z
R

C
 (c

hi
pp

in
g

cl
k)

11
FR

E
Q

_C
O

N
TR

_W
O

R
D

FR
E

Q
_A

V
G

C
O

U
N

T

D
_O

U
T<

5>
LO

CK
U

P
AG

C_
O

U
T<

2>
I_

BP
F_

AD
C<

2>
AD

C_
PH

I2
P

O
N

_P
A

C
O

R
TE

X
_G

P
O

<5
>

G
FS

K
_O

U
T<

1>
ad

c_
do

ne
C

LK
_I

N
T

(d
iv

id
er

 o
ut

 IN
TE

G
)

10
FR

E
Q

_C
O

N
TR

_W
O

R
D

FR
E

Q
_A

V
G

C
O

U
N

T

D
_O

U
T<

6>
di

g
sc

an
_o

ut
ta

u_
de

bu
g<

1>
I_

BP
F_

AD
C<

3>
AD

C_
PH

I3
P

O
N

_I
F

C
O

R
TE

X
_G

P
O

<6
>

G
FS

K
_O

U
T<

2>
se

ns
or

_a
dc

8
LF

_C
LO

C
K

 (s
ys

te
m

_c
lk

_p
ri)

9
FR

E
Q

_C
O

N
TR

_W
O

R
D

FR
E

Q
_A

V
G

C
O

U
N

T

D
_O

U
T<

7>
ta

u_
de

bu
g<

2>
I_

BP
F_

AD
C<

4>
AD

C_
PH

I4
P

O
N

_D
IV

C
O

R
TE

X
_G

P
O

<7
>

B
LE

_D
A

T
se

ns
or

_a
dc

9
TI

M
E

R
32

k
8

FR
E

Q
_C

O
N

TR
_W

O
R

D
FR

E
Q

_A
V

G
C

O
U

N
T

FR
E

Q
_C

O
N

TR
_W

O
R

D

D
_O

U
T<

8>
cl

k_
3w

b
I_

LC
<1

>
ga

in
_c

od
e_

I<
1>

Q
_B

PF
_A

DC
<1

>
CL

K0
M

F_
O

U
T<

1>
C

O
R

TE
X

_G
P

O
<8

>
P

O
R

<0
>

LC
_1

M
Hz

_d
yn

se
ns

or
_a

dc
4

C
O

R
TE

X
_S

LO
W

_E
N

 a
ka

 a
na

lo
g_

cf
g[

12
]

7
FR

E
Q

_C
O

N
TR

_W
O

R
D

I_
R

IN
G

<3
>

FR
E

Q
_A

V
G

C
O

U
N

T

D
_O

U
T<

9>
da

ta
_3

w
b

I_
LC

<2
>

ga
in

_c
od

e_
I<

2>
Q

_B
PF

_A
DC

<2
>

CL
K9

0
M

F_
O

U
T<

2>
C

O
R

TE
X

_G
P

O
<9

>
P

O
R

<1
>

LC
_1

M
Hz

_s
ta

t
se

ns
or

_a
dc

5
E

X
T_

C
LK

_G
P

IO
2

6
FR

E
Q

_C
O

N
TR

_W
O

R
D

I_
R

IN
G

<2
>

FR
E

Q
_A

V
G

C
O

U
N

T

D
_O

U
T<

10
>

en
b_

3w
b

I_
LC

<3
>

C
O

M
P

P
_Z

C
C

Q
_B

PF
_A

DC
<3

>
CL

K1
80

M
F_

O
U

T<
3>

C
O

R
TE

X
_G

P
O

<1
0>

P
O

R
<2

>
LC

_2
M

Hz
se

ns
or

_a
dc

6
H

F_
C

LO
C

K
 (s

ys
te

m
_c

lk
_s

ec
)

5
FR

E
Q

_C
O

N
TR

_W
O

R
D

I_
R

IN
G

<1
>

FR
E

Q
_A

V
G

C
O

U
N

T

D
_O

U
T<

11
>

I_
LC

<4
>

ZC
C

_C
LK

Q
_B

PF
_A

DC
<4

>
CL

K2
70

M
F_

O
U

T<
4>

C
O

R
TE

X
_G

P
O

<1
1>

P
O

R
<3

>
LC

_d
iv

_N
se

ns
or

_a
dc

7
LF

_e
xt

_P
A

D
 (m

ig
ht

 a
s

w
el

l)
4

I_
R

IN
G

<0
>

FR
E

Q
_A

V
G

C
O

U
N

T

D
_O

U
T<

12
>

C
or

te
x

H
C

LK
Q

_L
C<

1>
ga

in
_c

od
e_

I<
3>

I_
en

ve
lo

pe
<1

>
AD

C_
B1

P
M

F_
O

U
T<

5>
C

O
R

TE
X

_G
P

O
<1

2>
ta

u_
de

bu
g<

3>
LF

_e
xt

_G
PI

O
se

ns
or

_a
dc

0
rin

g_
tx

_m
od

_c
lk

 a
ka

 C
LK

_2
M

H
z

ak
a

"tx
 c

hi
p

cl
k

to
 c

or
te

x"
3

Q
_R

IN
G

<3
>

FR
E

Q
_A

V
G

C
O

U
N

T

D
_O

U
T<

13
>

C
or

te
x

H
ar

d
R

es
et

Q
_L

C<
2>

ga
in

_c
od

e_
I<

4>
I_

en
ve

lo
pe

<2
>

AD
C_

B2
P

M
F_

O
U

T<
6>

C
O

R
TE

X
_G

P
O

<1
3>

ta
u_

de
bu

g<
4>

sy
m

bo
l_

cl
k_

bl
e

se
ns

or
_a

dc
1

B
LE

_P
D

A
_c

lk
_m

ux
_o

ut
2

Q
_R

IN
G

<2
>

FR
E

Q
_A

V
G

C
O

U
N

T

D
_O

U
T<

14
>

C
or

te
x

S
of

t R
es

et
Q

_L
C<

3>
ga

in
_c

od
e_

I<
5>

I_
en

ve
lo

pe
<3

>
AD

C_
B3

P
M

F_
O

U
T<

7>
C

O
R

TE
X

_G
P

O
<1

4>
ta

u_
de

bu
g<

5>
se

ns
or

_a
dc

2
ZC

C
 fr

om
 z

cc
_c

lk
_r

ec
 ("

ZC
C

")
 --

 Z
C

C
 d

at
a

ou
tp

ut
 (s

am
pl

e
th

is
 w

ith
 re

co
ve

re
d

cl
oc

k
ab

ov
e)

1
Q

_R
IN

G
<1

>
FR

E
Q

_A
V

G
C

O
U

N
T

D
_O

U
T<

15
>

S
Y

S
R

E
S

E
TR

E
Q

Q
_L

C<
4>

ga
in

_c
od

e_
I<

6>
I_

en
ve

lo
pe

<4
>

CO
M

PP
M

F_
O

U
T<

8>
C

O
R

TE
X

_G
P

O
<1

5>
ta

u_
de

bu
g<

6>
se

ns
or

_a
dc

3
rin

g_
re

co
v_

cl
k

("
R

E
C

O
V

E
R

E
D

_C
LK

")
 --

 Z
C

C
 C

D
R

 re
co

ve
re

d
cl

oc
k

ou
tp

ut
co

un
te

r0
Q

_R
IN

G
<0

>
FR

E
Q

_A
V

G
 1

5
C

O
U

N
T

(o
ut

pu
t)

(o
ut

pu
t)

(o
ut

pu
t)

B
LU

E
 =

 to
 b

e
ad

de
d

G
R

E
E

N
 =

 to
 b

e
ch

an
ge

d
O

ra
ng

e
=

ch
an

ge
 p

us
he

d
to

 re
po

IN
PU

TS
!!

Ba
nk

 0
 (D

ef
au

lt
at

 P
O

N
)

Ba
nk

 1
Ba

nk
 2

Ba
nk

 3
Ba

nk
 4

Ba
nk

 5
Ba

nk
 6

Ba
nk

 7
B

an
k

8
B

an
k

9
B

an
k

10
B

an
k

11
B

an
k

12
B

an
k

13
B

an
k

14
B

an
k

15
B

an
k

16
D

_O
U

T<
0>

C
O

R
TE

X_
G

PI
<0

>
(n

/a
)

A
D

C
_C

LK
_E

XT
ad

c_
re

se
t_

gp
i

D
_O

U
T<

1>
C

O
R

TE
X_

G
PI

<1
>

G
PI

O
_P

O
N

D
A

TA
_I

N
ad

c_
co

nv
er

t_
gp

i
D

_O
U

T<
2>

C
O

R
TE

X_
G

PI
<2

>
AG

C_
IN

<1
>

D
A

TA
_C

LK
_I

N
ad

c_
pg

a_
am

pl
ify

_g
pi

D
_O

U
T<

3>
C

O
R

TE
X_

G
PI

<3
>

AG
C_

IN
<2

>
EX

T_
IN

TE
R

R
U

PT
<0

>
n/

a
(^

--
 to

 A
D

C
/P

G
A

)

D
_O

U
T<

4>
C

O
R

TE
X_

G
PI

<4
>

AG
C_

IN
<3

>
G

FS
K

IN
 <

0>
FR

EQ
_C

TR
L_

W
O

R
D

_S
C

A
N

 (L
SB

)
D

_O
U

T<
5>

C
O

R
TE

X_
G

PI
<5

>
AG

C_
IN

<4
>

G
FS

K
IN

 <
1>

FR
EQ

_C
TR

L_
W

O
R

D
_S

C
A

N
D

_O
U

T<
6>

C
O

R
TE

X_
G

PI
<6

>
AG

C_
IN

<5
>

G
FS

K
 IN

 <
2>

FR
EQ

_C
TR

L_
W

O
R

D
_S

C
A

N
D

_O
U

T<
7>

C
O

R
TE

X_
G

PI
<7

>
AG

C_
IN

<6
>

FR
EQ

_C
TR

L_
W

O
R

D
_S

C
A

N

D
_O

U
T<

8>
C

O
R

TE
X_

G
PI

<8
>

EX
T_

IN
TE

R
R

U
PT

<1
>

I_
AD

C_
EX

T<
1>

FR
EQ

_C
TR

L_
W

O
R

D
_S

C
A

N
D

_O
U

T<
9>

C
O

R
TE

X_
G

PI
<9

>
EX

T_
IN

TE
R

R
U

PT
<2

>
I_

AD
C_

EX
T<

2>
FR

EQ
_C

TR
L_

W
O

R
D

_S
C

A
N

D
_O

U
T<

10
>

C
O

R
TE

X_
G

PI
<1

0>
EX

T_
IN

TE
R

R
U

PT
<3

>
I_

AD
C_

EX
T<

3>
FR

EQ
_C

TR
L_

W
O

R
D

_S
C

A
N

D
_O

U
T<

11
>

C
O

R
TE

X_
G

PI
<1

1>
di

g
sc

an
_p

hi
I_

AD
C_

EX
T<

4>
FR

EQ
_C

TR
L_

W
O

R
D

_S
C

A
N

D
_O

U
T<

12
>

C
O

R
TE

X_
G

PI
<1

2>
di

g
sc

an
_p

hi
b

Q
_A

DC
_E

XT
<1

>
FR

EQ
_C

TR
L_

W
O

R
D

_S
C

A
N

D
_O

U
T<

13
>

C
O

R
TE

X_
G

PI
<1

3>
di

g
sc

an
_i

0o
1

Q
_A

DC
_E

XT
<2

>
FR

EQ
_C

TR
L_

W
O

R
D

_S
C

A
N

D
_O

U
T<

14
>

C
O

R
TE

X_
G

PI
<1

4>
di

g
sc

an
_i

n
Q

_A
DC

_E
XT

<3
>

FR
EQ

_C
TR

L_
W

O
R

D
_S

C
A

N
 (M

SB
)

D
_O

U
T<

15
>

C
O

R
TE

X_
G

PI
<1

5>
di

g
sc

an
_l

oa
d

Q
_A

DC
_E

XT
<4

>
LF

_e
xt

_G
PI

O

In
te

rr
up

t N
ot

es
:

E
X

T_
IN

TE
R

R
U

P
T<

0>
 is

 d
eb

ou
nc

ed
, a

nd
 is

 a
ct

iv
e

hi
gh

E
X

T_
IN

TE
R

R
U

P
T<

1>
 is

 n
ot

 d
eb

ou
nc

ed
, a

nd
 is

 a
ct

iv
e

hi
gh

E
X

T_
IN

TE
R

R
U

P
T<

2>
 is

 n
ot

 d
eb

ou
nc

ed
, a

nd
 is

 a
ct

iv
e

lo
w

E
X

T_
IN

TE
R

R
U

P
T<

3>
 is

 n
ot

 d
eb

ou
nc

ed
, a

nd
 is

 a
ct

iv
e

lo
w

ex
te

rn
al

_i
nt

er
ru

pt
_a

ct
iv

el
ow

 is
 th

e
de

di
ca

te
d

pa
d

in
te

rr
up

t;
it

is
 n

ot
 d

eb
ou

nc
ed

, a
nd

 is
 a

ct
iv

e
lo

w
A

ll
fiv

e
ar

e
sy

nc
hr

on
iz

ed
 to

 H
C

LK

Figure 6: GPIO Bank

21

10 Interrupts

There are four external interrupts available in the GPIO bank with various
trigger polarities and debouncing. All four are synchronized to HCLK.

EXT_INTERRUPT<0> is debounced, and is active high

EXT_INTERRUPT<1> is not debounced, and is active high

EXT_INTERRUPT<2> is not debounced, and is active low

EXT_INTERRUPT<3> is not debounced, and is active low

The interrupt mask is set using the register 0xE000E100 in the startup
file (cm0dsasm.s). The order of the interrupt mask is as follows, ordered from
LSB to MSB. For example, to activate only the UART and RFTIMER ISRs
the mask would be 0x0081.

UART

interrupt_gpio3_activehigh_debounced

optical_irq_in

ADC

0

0

RF_FSM

RFTIMER

interrupt_rawchips_startval

interrupt_rawchips_32

0

optical_sfd_interrupt

interrupt_gpio8_activehigh

interrupt_gpio9_activelow

interrupt_gpio10_activelow

0

These are useful macros for dynamically controlling interrupts. See ARM
documentation for further details.

// Interrupt set enable reg

#define ISER *(unsigned int*)(0xE000E100)

// Interrupt clear enable reg

#define ICER *(unsigned int*)(0xE000E180)

22

// Interrupt clear pending reg

#define ICPR *(unsigned int*)(0xE000E280)

// Interrupt set pending reg

#define ISPR *(unsigned int*)(0xE000E200)

11 UART

SCM has no JTAG capability so UART is the primary debugging method. All
printf output is printed out over UART. Assuming a 5 MHz HCLK frequency
the default baud rate is 19200. If HCLK is some other frequency then the
baud rate should be adjusted accordingly since the divide ratio is fixed (e.x.
if you doubled HCLK to 10 MHz you should set baud rate to 38400). Other
settings that should be used: 8 data bits, 1 stop bit, and no parity. Every
character input to SCM via the UART will cause an interrupt to go off.
Each character needs to be read as SCM doesn’t have any UART framing
capability. See the demo software for how to send commands to the chip. A
three character format is adopted where three ASCII characters are sent to
the chip followed by a newline (e.x. sta\n). A bank of IF statements checks
to see if the input command sequence matches any of the pre-programmed
ones and then executes the appropriate section of code.

A link to to a useful terminal program for Windows is given below. This
program is useful for passively monitoring debug output from the chip as
well as sending commands over UART. It is also possible to both send and
receive UART data from Python or MATLAB. This can be a very useful way
to automate data collection and testing.

https://sites.google.com/site/terminalbpp/

23

https://sites.google.com/site/terminalbpp/

12 SPI

13 Clock Configuration

14 Frequency Counters

15 Timers

See Section 3.35 in [3] for a detailed description of the RFTIMER module.
Note the design assumption that HCLK and RFTIMER are phase aligned.
This means that both clocks should be derived from the same oscillator
and that HCLK must be an integer multiple of RFTIMER. A moderately
complex example of using the RFTIMER module can be found in the 802.15.4
TSCH demo in the Git repo. Unfortunately only 8-bit frequency dividers are
available for generating the RFTIMER clock (The JIRA feature SCUM-124
for changing to a 16-bit divider was not able to be added to SCM-3C in time
for tape-out).

24

16 LO, PA, and Divider Hardware Details

16.1 Analog Scan Chain

In this section I will attempt to describe the functionality of the chain bits.
The scan chain is nominally controlled by functions from the Cortex M0,
so I will not go into excessive detail regarding the exact bits in the array
that need to be changed to perform certain functions. Rather, I will describe
them in chunks.

• fine code 5 bit control of the LC tank’s fine tuning DAC f0, ... ,f4, fd

• mid code 5 bit control of the LC tank’s mid tuning DAC m0, ... m4,
md

• coarse code 5 bit control of the LC tank’s coarse tuning DAC c0, ...
c4, cd

• lo tune select set to 0 for LC control from the Cortex analog cfg,
1 for scan

• polyphase enable set to 0 to disable the polyphase filter. 1 to enable.

• lo current tune 8 bit control of LC tank’s current between 180 µA
and 800µA LSB to MSB.

• test bg 7 bit control of the test band gap (connected to pad) from
0.75 V to 0.85 V if MSB = 0, and from 1.05 V to 1.12 V if MSB = 1
(panic).

• pa ldo rdac see test bg, controls power amplifier supply.

• lo ldo rdac see test bg, controls LO supply.

• div ldo rdac see test bg, controls divider supply.

• mod logic controls the source of modulation for the 802.15.4 capacitor.
The MSB determines whether the modulation is inverted or not (1 for
inversion). The next bit selects cortex or pad modulation (0 for cortex,
1 for pad). The next two bits can be used to test the modulation, setting
the control bit to VDD or to ground. Note: for 802.15.4 modulation,

25

the bits should be set to 1000. For BLE modulation from pad using
the 802.15.4 capacitor, it should be set to 0111. A schematic of this
control is shown in Fig. 7.

• mod 15 4 tune tunes the frequency spacing of the 802.15.4 modulation
capacitor. 4 bits, but the LSB is a dummy (not binary weighted).

• sel 1mhz 2mhz 0 uses the x2 XOR multiplier. 1 is pass throgh.

• pre 2 backup en enables the static flip flop div-by-2 prescaler.

• pre 5 backup en enables the static flip flop div-by-5 prescaler. This is
recommended for standard operation.

• pre dyn is a 3-bit, one-hot selection of three different injection-lock
TSPC-esque pre-scalers. It needs to be inverted (so all 1s will disable
all three dynamic pre-scalers). The second of the three is the strongest,
and will result in a div-by-2 for almost all LO and divider settings. The
first can consistently give a div-by-5 for most settings. The third one
is the weakest, and it is possible to divide by up to 7 using it.

• div 64mhz enable enables a 64 MHz output frequency divider to clock
the baseband stages and receiver ADC.

• div 20mhz enable enables a 20 MHz output frequency divider to clock
the BLE GFSK module. This is also the clock output that is connected
to the LC counter.

• div static code sets the static divider ratio. This can also be con-
trolled from the Cortex’s analog config, and generally should be. More
on that later.

• div static reset b active low reset of the static divider.

• dyn div N there is another, theoretically lower power, divider on the
chip as well. It has never been tested.

• div tune select set to 0 to have the divider controlled from the cortex.
Set to 1 for the divider to be controlled from scan chain.

• BLE module settings will be obfuscated in future versions of the chip.

26

../figures/appendix/mod_logic_small.pdf

Figure 7: 802.15.4 Modulation Logic Schematic

16.2 Cortex Code

I will now describe some of the very low-level functions for directly controlling
parts of the transmitter from the cortex. Start with the relevant config and
rdata registers:

#de f i n e ACFG DIV ADDR ∗(unsigned i n t ∗) (APB ANALOG CFG BASE + 0x00140000)
#de f i n e ACFG DIV ADDR 2 ∗(unsigned i n t ∗) (APB ANALOG CFG BASE + 0x00180000)
#de f i n e ACFG LO ADDR ∗(unsigned i n t ∗) (APB ANALOG CFG BASE + 0x001C0000)
#de f i n e ACFG LO ADDR 2 ∗(unsigned i n t ∗) (APB ANALOG CFG BASE + 0x00200000)

#de f i n e ASYNC FIFO ADDR ∗(unsigned i n t ∗) (APB ANALOG CFG BASE + 0x00680000)

ACFG DIV ADDR contains two control bits to set the RF divider divide
ratio.
ACFG DIV ADDR 2 has the remaining control bits, as well as enable and reset
signals for the divider. Quick note here: this divider struggles at low supply
voltages, and will not work for odd divide ratios if the input frequency is
high (around 1.2 GHz). The code to control these divider registers is called
digProgram(div ratio, reset, enable). Reset is active low. A diagram
of these two registers is shown in Fig. 8. The pre-scaler must be enabled for
this divider to have an output (see scan chain for details).

../figures/appendix/div_reg_small.pdf

Figure 8: Divider registers, bit by bit

ACFG LO ADDR 2 has the fine frequency control LSB and fine frequency

27

control dummy bit. ACFG LO ADDR has the remaining control bits. The func-
tion LC FREQCHANGE(coarse, mid, fine) controls these overlapping capac-
itor DACs. This function obfuscates the dummy bits. The function LC monotonic(LC code,

mid divs, coarse divs) implements the function in Chapter 6. If you are
tuning the LC oscillator, this you will probably use LC monotonic. In any
case, the diagram of the two LC control registers is shown in Fig. 9. The
bits labeled with a “d” are the dummy bits, and will change the frequency
by approximately five LSBs of the given DAC.

../figures/appendix/lo_reg_small.pdf

Figure 9: Oscillator frequency tune registers, bit by bit

There are a number of functions that control the scan chain, but they are
relatively straightforward, especially considering the exposition given in the
previous section. There are also a functions written to generate BLE adver-
tising packets (gen ble packet) and to use the on-chip asynchronous FIFO
to transmit BLE packets (transmit ble packet). At the moment, they are
designed for transmitting 128 bit packets but they can easily be repurposed
to transmit larger payloads. The transmit function in particular can be re-
purposed with completely arbitrary data for potential experimentation with
802.15.4 chipping sequences.

16.3 Common Configurations

This section describes the necessary scan/Cortex procedure to use the radio
in various modes.

16.3.1 Receive Mode (RF only)

1. Enable the LC tank LDO and current source. This can be done either
through GPIO (for fast start) or with the scan chain. Enabling the
LC tank can be configured to start automatically via the radio state
machine on SCM v3b.

2. Set the LC tank current to an appropriate level (most people have used
a current level of 127 - this appears to offer a good tradeoff between

28

PA efficiency, LO current, and phase noise).

3. Enable the polyphase filter.

4. Program the LC tank so that it is 2.5 MHz ABOVE the receive channel
frequency.

5. Enable the IF chain and digital baseband. This is documented else-
where.

16.3.2 Transmit Mode - 802.15.4

1. Enable the LC tank LDO and current source.

2. Enable the PA LDO. Again, on SCM v3 this can be done with either
GPIO (fast) or scan chain.

3. Ensure that the polyphase filter is disabled.

4. Tune the LC tank frequency to 500 kHz ABOVE the desired channel
frequency.

5. If data is transmitted from the on-chip state machine, set the four
mod logic bits to 1000. If data is transmitted from a pad, set mod logic

to 1000. The bit-bang direct modulation is inverted from the bits com-
ing from the state machine.

6. Ensure that the transmit clock (source can be chosen) is within 40 ppm
of 2 MHz.

7. Use instructions in [Sahar˙thesis] to load and transmit a packet.

16.3.3 Transmit Mode - BLE

1. Enable the LC tank LDO and current source.

2. Enable the PA LDO.

3. Enable the divider LDO. The divider does not need to run, BUT the
data buffers run off of the divider supply.

4. Ensure that the polyphase filter is disabled.

29

5. Tune the LC tank frequency to approximately 250 kHz BELOW the
desired channel frequency.

6. Disable the 802.15.4 DAC by setting mod logic to 0010 or 0001.

7. If data is transmitted from a pad, set the mod logic bits to 0010. If
data is transmitted from the Cortex (requires some trickery here: the
Cortex clock needs to be an exact integer multiple of 1 MHz, and bits
go straight from memory mapped IO to the LC tank. This also requires
assembly code. Fortunately Keil allows in-line assembly).

8. Bypass both the FIFO and the GFSK module.

9. Run the BLE transmitting assembly code.

It is also possible to use the 802.15.4 capacitor DAC to transmit BLE.
However, this is only possible from off-chip. The only DAC that can be
controlled directly from the Cortex is the set of 500 kHz BLE capacitors. On
SCM v3b, this procedure will be significantly different for two reasons. First,
there is a 2048-bit FIFO so that the Cortex does not need to run at an exact
multiple of 1 MHz. Second, there is a multiplexer to select whether the data
goes to the 802.15.4 capacitors or the BLE capacitors.

30

17 RF Receiver Analog Scan Chain

The portion of the analog scan chain (ASC) that connects to the receiver ana-
log circuits (some of the ASC also connects to digital baseband) are largely
unchanged between all hardware generations. The exception being the clock
generation which has an addition bit called ’high range’ which extends the
upper frequency range of the oscillator. All of these settings are already
initialized to appropriate values in software but this section is included to
document the control settings.

17.1 Mixer Bias

Mixer DC bias is set by driving a programmable current source through a
variably sized diode connected load. The LO is then AC coupled to the mixer
gates. There are four total mixer switches, a differential set each for I and Q
labeled as Ip, In, Qp, and Qn.

The diode connected load is labeled as ndac and consists of four equally
sized devices connected in parallel. The four bit scan code is thermometer
and each bit turns on an individual diode connected nmos. Setting all bits
to ’1’ generates the lowest bias voltage.

ASC<294:297> = mix_bias_In_ndac<4:1>

ASC<299:302> = mix_bias_Ip_ndac<4:1>

ASC<303:306> = mix_bias_Qn_ndac<4:1>

ASC<308:311> = mix_bias_Qp_ndac<4:1>

The current sources are labeled as pdac and consist of 16 equally sized
current sources in parallel. The four bit pdac code is binary weighted and a
’0’ activates the current source. ie all zeros is the most current and thus the
highest bias voltage.

ASC<312:315> = mix_bias_In_pdac<4:1> (<4(MSB):1>)

ASC<316:319> = mix_bias_Ip_pdac<4:1>

ASC<320:323> = mix_bias_Qn_pdac<4:1>

ASC<324:327> = mix_bias_Qp_pdac<4:1>

The I/Q mixers can be independently disabled by these two bits. When
disabled the mixer DNW goes high impedance in an attempt to improve PA
efficiency so the mixers should be disabled when transmitting. ’0’ is enabled

31

and ’1’ is disabled. Note that 3C added a memory map control option for
enabling and disabling the mixers which is discussed in Section 18.3.

ASC<298> = mix_off_i

ASC<307> = mix_off_q

17.2 Transimpedance Amplifiers

Each transimpedance amplifier has enable, bandwidth, and gain control bits.
Each TIA has three separate enable bits to allow for flexibility in shutdown
modes. The amplifiers are inverter-based and have separate enable bits for
the nmos and pmos labeled as ’enn’ and ’enp’ respectively. There is another
control bit which activates a pull-down switch to ground the TIA inputs.
This pulls the bottom plate of the AC coupling caps to ground and makes
the mixer essentially operate in voltage mode driving a capacitive load. Band-
width control is binary weighted with all ’1’s setting the bandwidth to its
minimum value.

ASC<328:331> = tia_cap_on<4:1> (<4(MSB):1>)

ASC<332> = tia_pulldown (1=pull TIA input to ground)

ASC<333> = tia_enn (1=enabled)

ASC<334> = tia_enp (0=enabled)

ASC<462> = tia_enp (0=enabled)

ASC<463> = tia_enn (1=enabled)

ASC<464> = tia_pulldown (1=pull TIA input to ground)

ASC<465:468> = tia_cap_on<1:4> (<1:4(MSB)>)

17.3 Gain Control

Determines whether gain is controlled by scan chain or AGC:

’1’ = AGC control, ’0’ = ASC

ASC<271> = agc_gain_mode (Q chan)

ASC<491> = agc_gain_mode (I chan)

Gain control code, d63 is max gain:

As value is decreased from d63, first the TIA gain is decreased,

followed by stage 1 gm, then stage 2 gm.

32

ASC<272:277> = code_scan<5:0> Q chan (<5(MSB):0>)

ASC<485:490> = code_scan<0:5> I chan (<0:5(MSB)>)

Gm control for filter stage 3 (ADC driver); thermometer coded.

All ’1’s = max gm.

ASC<278:290> = stg3_gm_tune<1:13>

ASC<472:484> = stg3_gm_tune<13:1>

17.4 Filters

Each filter stage has control over the amplifier enable, the clock enable, and
tuning of the capacitor ratio that sets the filter’s pole location. The transcon-
ductance of each stage is controlled as described in the gain control section.

Q Chan amplifier enables:

ASC<347> = stg3_amp_en

ASC<351> = stg2_amp_en

ASC<355> = stg1_amp_en

Q Chan individual clock enables:

ASC<369> = stg3_clk_en

ASC<376> = stg2_clk_en

ASC<383> = stg1_clk_en

Q Chan stage 3 cap ratio:

ASC<370:372> = stg3_C2<3:1>

ASC<373:375> = stg3_C1<3:1>

Q Chan stage 2 cap ratio:

ASC<377:379> = stg2_C2<3:1>

ASC<380:382> = stg2_C1<3:1>

Q Chan stage 1 cap ratio:

ASC<384:386> = stg1_C2<3:1>

ASC<387:389> = stg1_C1<3:1>

I Chan amplifier enables:

33

ASC<441> = stg1_amp_en

ASC<445> = stg2_amp_en

ASC<449> = stg3_amp_en

I Chan individual clock enables:

ASC<400> = stg3_clk_en

ASC<407> = stg2_clk_en

ASC<414> = stg1_clk_en

I Chan stage 3 cap ratio:

ASC<401:403> = stg3_C2<3:1>

ASC<404:406> = stg3_C1<3:1>

I Chan stage 2 cap ratio:

ASC<408:410> = stg2_C2<3:1>

ASC<411:413> = stg2_C1<3:1>

I Chan stage 1 cap ratio:

ASC<415:417> = stg1_C2<3:1>

ASC<418:420> = stg1_C1<3:1>

17.5 ADC

Q Chan comparator offset trim:

Binary weighted, increase from 0 to add cap to either side of comparator.

ASC<335:339> = pctrcl<4:0> (<4(MSB):0>)

ASC<340:344> = nctrcl<4:0>

Activate 1-bit mode for ZCC on Q channel:

ASC<345> = mode_1bit

Enable Q channel comparator:

ASC<346> = adc_comp_en

Enable Q channel ADC FSM:

ASC<367> = adc_fsm_en

34

Q channel common mode reference generation:

Separate amp/clock enables;

The select signal controls a capacitive voltage divider.

ASC<359> = vcm_amp_en

ASC<360:361> = vcm_vdiv_sel<0:1>

ASC<362> = vcm_clk_en

Q channel reference voltage generation:

Separate amp/clock enables;

The select signal controls a capacitive voltage divider.

ASC<363> = vref_clk_en

ASC<364:365> = vref_vdiv_sel<1:0>

ASC<366> = vref_amp_en

I channel common mode reference generation:

Separate amp/clock enables;

The select signal controls a capacitive voltage divider.

ASC<390> = vcm_amp_en

ASC<391:392> = vcm_vdiv_sel<0:1>

ASC<393> = vcm_clk_en

I channel reference voltage generation:

Separate amp/clock enables;

The select signal controls a capacitive voltage divider.

ASC<394> = vref_clk_en

ASC<395:396> = vref_vdiv_sel<1:0>

ASC<397> = vref_amp_en

Enable I channel ADC FSM:

ASC<398> = adc_fsm_en

Enable I channel comparator:

ASC<450> = adc_comp_en

Activate 1-bit mode for ZCC on I channel:

35

ASC<451> = mode_1bit

I Chan comparator offset trim:

Binary weighted, increase from 0 to add cap to either side of comparator.

ASC<452:456> = nctrl<0:4> (<0:4(MSB)>)

ASC<457:461> = pctrl<0:4>

17.6 Clock Generation

Enables for filter and ADC clock generation; ’1’ = on

ASC<422> = adc_phi_en

ASC<423> = filt_phi_en

Mux select for IF clock source:

00=gnd, 01=internal RC, 10=divided LC, 11=external pad

ASC<424:425> = clk_select<1:0>

IF RC clock enable; ’1’ = on

ASC<426> = RC_clk_en

Coarse and fine frequency tune, binary weighted

ASC<427:431> = RC_coarse<4:0> (<4(MSB):0>)

ASC<433:437> = RC_fine<4:0> (<4(MSB):0>)

Switch between high and low speed ranges for IF RC:

’1’ = high range

ASC<726> = RC_high_speed_mode

17.7 LDO and Reset

Resistor for setting bandgap reference voltage

ASC<492:498> = if_ldo_rdac<0:6> (<0:6(MSB)>)

’1’ = disable ability for POR to reset IF blocks

ASC<499> = por_disable

36

Figure 10: IF Debugging Path

’0’ = force reset from scan chain

ASC<500> = scan_reset

17.8 Debug Path

IF debugging access is available at the nodes marked with dots in Figure
10. Differential IF signals are connected to source followers to pseudo-
differentially route signals out to an off-chip instrumentation amplifier for
viewing. The four possible observation locations all share a pair of chip pads
and thus should only be turned on one at a time. Input stimulus can also
be injected at these same locations from off-chip. A differential pair of input
pads is driven from an off-chip single ended to differential converter. The I
and Q paths have independent debug paths and thus there are 8 total pads
used for debug observation (2 inputs and 2 outputs for I, 2 inputs and 2
outputs for Q).

The debug path is controlled by an enable bit to activate the source fol-
lower bias, a bit to enable an analog pass gate connecting the source follower
output to the pads, and a bit which enables another analog pass gate con-
necting the input pads to a particular node. Thus each of the 8 total debug
access points are controlled by 3 bits each for a total of 24 scan bits.

Q channel mixer output node:

ASC<291> = dbg_bias_en_Q

ASC<292> = dbg_out_en_Q

ASC<293> = dbg_input_en_Q

37

Q channel input to stage 3 filter:

ASC<348> = dbg_out_on_stg3

ASC<349> = dbg_input_on_stg3

ASC<350> = dbg_bias_en_stg3

Q channel input to stage 2 filter:

ASC<352> = dbg_out_on_stg2

ASC<353> = dbg_input_on_stg2

ASC<354> = dbg_bias_en_stg2

Q channel input to stage 1 filter:

ASC<356> = dbg_out_on_stg1

ASC<357> = dbg_input_on_stg1

ASC<358> = dbg_bias_en_stg1

I channel input to stage 1 filter:

ASC<438> = dbg_bias_en_stg1

ASC<439> = dbg_input_on_stg1

ASC<440> = dbg_out_on_stg1

I channel input to stage 2 filter:

ASC<442> = dbg_bias_en_stg2

ASC<443> = dbg_input_on_stg2

ASC<444> = dbg_out_on_stg2

I channel input to stage 3 filter:

ASC<469> = dbg_input_on_I

ASC<470> = dbg_out_on_I

ASC<471> = dbg_bias_en_I

I channel input to stage 3 filter:

ASC<446> = dbg_bias_en_stg3

ASC<447> = dbg_input_on_stg3

ASC<448> = dbg_out_on_stg3

There are also digital output signals which can be enabled for the ADCs
and clock generation. The ADC debug outputs allow observation of internal
ADC FSM signals. The clock debug signals enable the output of the multi-

38

phase clock signals used to run the filters and ADC. All signals are output
through GPIO.

ASC<368> = Enable I channel ADC debug outputs

ASC<399> = Enable Q channel ADC debug outputs

ASC<421> = Enable debug output of ADC clock phases

ASC<432> = Enable debug output of filter clock phases

18 Power On Control

Several LDO control methods are implemented to enable flexibility in quickly
turning the transceiver on and off for tightly duty cycled operation. There
are four separate LDOs in the transceiver: the LO, PA, divider, and IF.
Each can be independently controlled through any combination of the means
outlined below. The possible ways to turn on an LDO are: scan chain,
GP input, hardware FSM control, and through memory mapped registers
from the Cortex-M0. Note that there is a fairly significant difference in the
implementation of this power control logic between SCM3 and SCM3B/C.
The memory mapped control option is only available in 3C.

At the time of this writing, the most practical control method appears
to be using the memory mapped control option. While this does require
the Cortex-M0 to be involved, it only needs to respond to an interrupt long
enough to toggle one memory mapped register and then exit. This is pri-
marily due to the turn-on time requirements of the LO. At the time when
the radio FSM was designed, no consideration had been given to how long it
would take for LO start-up to occur, so there is no handling of that in the
FSM. Thus the FSM based control signals only assert at the actual packet
event times, not offset by a start-up period.

The four ASC control signals for each LDO:

master_ldo_en = ’0’ will force the LDO off, regardless of other settings

scan_pon = ’1’ turns on the LDO via scan chain

gpio_pon_en = ’1’ allows the LDO to be turned on via GPIO_PON input

fsm_pon_en = ’1’ allows the LDO to be turned on via PON_XX signal

Verilog implementation of the power on logic:

39

assign x1 = gpio_pon && gpio_pon_en_xx;

assign x2 = fsm_pon && fsm_pon_en_xx;

assign x3 = x1 || x2 || scan_pon_xx;

assign LDO_enable_xx = x3 && master_ldo_en_xx;

Power-on signals generated by radio FSM:

assign FSM_TX_PON = (tx_state == TX_FIFO_DRAIN) || (tx_state == TX_DONE);

assign FSM_RX_PON = (rx_state != RX_SLEEP) & (rx_state != RX_DONE) & ...

(rx_state != RX_CRC_CHECK) & ...

(rx_state != RX_DMA_WAIT2);

Individual LDO ‘PON XX’ enable signals from digital. These can be gen-
erated either directly from the radio FSM, or from memory mapped registers.
The mux control signals are also set via memory mapped registers.

assign PON_LO = pon_cfg[0] ? (FSM_TX_PON || FSM_RX_PON) : pon_cfg[3];

assign PON_IF = pon_cfg[1] ? FSM_RX_PON : pon_cfg[4];

assign PON_PA = pon_cfg[2] ? FSM_TX_PON : pon_cfg[5];

assign PON_DIV = pon_cfg[6];

Memory mapped control signals for LDOs. The mux selects determine
whether the hardware FSMs or a memory mapped register get connected to
the LDO ’PON XX’ signals that go to analog. For the mux selects, ’1’ =
FSM control, ’0’ = memory mapped control. The memory mapped address
for this register is ANALOG CFG REG 10.

analog_cfg[160] = pon_cfg[0] = LO LDO mux select

analog_cfg[161] = pon_cfg[1] = IF LDO mux select

analog_cfg[162] = pon_cfg[2] = PA LDO mux select

analog_cfg[163] = pon_cfg[3] = LO LDO memory-mapped enable

analog_cfg[164] = pon_cfg[4] = IF LDO memory-mapped enable

analog_cfg[165] = pon_cfg[5] = PA LDO memory-mapped enable

analog_cfg[166] = pon_cfg[6] = Divider LDO memory-mapped enable

analog_cfg[167] = Aux LDO memory-mapped enable

The analog scan chain bits used to configure the power control block:

ASC<501> = scan_pon_if

ASC<502> = scan_pon_lo

ASC<503> = scan_pon_pa

40

ASC<504> = gpio_pon_en_if

ASC<505> = fsm_pon_en_if

ASC<506> = gpio_pon_en_lo

ASC<507> = fsm_pon_en_lo

ASC<508> = gpio_pon_en_pa

ASC<509> = fsm_pon_en_pa

ASC<510> = master_ldo_en_if

ASC<511> = master_ldo_en_lo

ASC<512> = master_ldo_en_pa

ASC<513> = scan_pon_div

ASC<514> = gpio_pon_en_div

ASC<515> = fsm_pon_en_div

ASC<516> = master_ldo_en_div

18.1 Aux Digital LDO

The aux digital LDO can also be turned in multiple ways. The LDO enable
is multiplexed between analog scan chain and a memory mapped register as
shown below. Note that per JIRA-101 an inversion was added here so that
the aux digital LDO defaults to enabled at cold start. Thus the enable for
the AUX LDO is active low.

assign aux_ldo_enable_needs_levelshifted = ...

~(ASC_aux_ldo_enable_mux_select? ...

analog_cfg[167] : ASC_aux_ldo_enable);

The mux select is ASC<914>,

0 = controlled by ASC<916>,

1 = controlled by analog_cfg<167>

ASC<914> = Mux select

ASC<916> = Aux digital LDO enable

18.2 Power Sequencing

The LO takes > 50µs for its frequency to settle. Turning on the PA also
causes a frequency transient, but of much smaller magnitude. Ideally in
transmit the LO should be turned on at least 50 µs before the PA is activated

41

Figure 11: Diagram of power control options for radio LDOs.

42

Figure 12: Diagram of power control options for divider and VDD AUX
LDOs.

43

to avoid broadcasting the LO settling characteristics. The PA also settles
within about 50 µs. In receive, the LO should be given enough time to settle
before the start of the guard time. The IF/RX LDO can be enabled at the
same time as the LO. The AUX LDO must also be enabled during both
transmit and receive mode.

18.3 TX/RX Switching

In addition to needing to turn the various LDOs on and off to switch be-
tween transmit and receive, the polyphase filter and mixer also need to be
disabled/enabled. These can be controlled either via analog scan chain or
memory mapped registers. It is recommended to use the memory mapped op-
tion to avoid the slow program time of the scan chain for fast TX/RX switch-
ing. Note that the memory mapped option is a new addition for SCM-3C.
There are three bits which control whether the polyphase filter is activated
and whether the mixers are switched to high impedance mode to improve the
TX efficiency (there is one bit each for I and Q mixer). The memory mapped
address for the analog cfg bits is 0x52400000 (which should have the macro
name ANALOG CFG REG 16). To use the memory mapped interface, first
set all mux select bits (ASC< 744 : 746 >) to ‘1’.

Enable polyphase (In RX set to ’1’, in TX set to ’0’):

Mux select: ASC<746>

S0: ASC<971>

S1: analog_cfg<256>

Enable I mixer (In RX set to ’0’, in TX set to ’1’):

Mux select: ASC<744>

S0: ASC<298>

S1: analog_cfg<258>

Enable Q mixer (In RX set to ’0’, in TX set to ’1’):

Mux select: ASC<745>

S0: ASC<307>

S1: analog_cfg<257>

To activate RX mode:

ANALOG_CFG_REG__16 = 0x1;

44

To activate TX mode:

ANALOG_CFG_REG__16 = 0x6;

19 Digital Baseband

Various debugging signals are available for output via the GPIO bank. Reset
can come from either analog scan chain or a memory mapped register and is
active low.

ASC<240> = mux select for reset source; 0 = ASC[241], 1 = analog_cfg[75]

ASC<241> = active low reset from ASC

Choose whether I/Q input signals are from on-chip or off-chip.

’0’ = On-chip

’1’ = Inject from GPIO bank

ASC<96> = IQ_select

Choose where IF amplifier gain control is connected

00=AGC FSM, 10 or 01=analog_cfg, 11=GPIN

ASC<102:101> = vga_gain_select

Gain control settings from memory mapped register (analog_cfg)

I channel gain = analog_cfg_agc[229:224]

Q channel gain = analog_cfg_agc[235:230]

Choice of detector for AGC

’0’ = Use envelope detector, ’1’ = Use original overflow detector

ASC<100> = sel_envelope_0

For adding a gain offset to correct for I/Q amplitude mismatch

gain_offset = analog_cfg_agc[238:236]

Choose which channel to add gain offset to

’0’ = subtract ’gain_offset’ from Q channel

’1’ = subtract ’gain_offset’ from I channel

45

gain_imbalance_select = analog_cfg_agc[239]

Memory mapped register that controls how long AGC FSM waits for settling

AGC_wait_time = analog_cfg_agc[251:240]

Signal envelope level that triggers a gain reduction

Envelope_threshold = analog_cfg_agc[255:252]

Activate AGC mode where only the TIA is under automatic control

ASC<97> = agc_TIA_mode

Register to read the min/max values of I and Q

IQ_minmax_rdata = analog_rdata[239:224]

CDR: Sampling point for clock recovery; use 3

sample_point = analog_cfg[78:76]

CDR: Feedback parameters for clock recovery

e_k_shift = analog_cfg[58:55] Use x

tau_shift = analog_cfg[63:59] Use x

Sign control bit for matched filter

’0’ = , ’1’ =

ASC<103> = mf_data_sign

Memory mapped register for reading average frequency value

freq_result = analog_rdata[265:256]

freq_valid = analog_rdata[266]

// Check valid flag

if(ANALOG_CFG_REG__16 & 0x400)

return ANALOG_CFG_REG__16 & 0x3FF;

else

return 0;

46

19.1 RSSI

An estimate of received signal quality can be obtained by reading the Link
Quality Indicator (LQI) and RSSI registers. The RSSI value corresponds to
the gain setting after Automatic Gain Control has settled and has a maximum
value of 63, which roughly corresponds to an input power of ≤ -85 dBm. For
every unit value below 63, the received signal amplitude has increased by
approximately 1 dB.

RSSI = analog_rdata[255:240] = (ANALOG_CFG_REG__15 & 0x0F)

19.2 Link Quality Indicator

The LQI register contains the total number of chip errors found within the
first eight payload symbols. Dividing the LQI register value by 256 (8*32)
gives the corresponding chip error rate. Note that if they are less than eight
payload symbols, then the error rate should be calculated by dividing by the
appropriate number of total chips.

LQI = analog_rdata[343:336] = (ANALOG_CFG_REG__21 & 0xFF)

19.3 Chip Rate Error Estimate

During zero-drift operation the clock and data recovery module shifts in eight
new samples and outputs a strobe to the demodulator to make a decision.
To correct for chip rate error it periodically clocks in either more or less than
eight samples before a decision gets made. By keeping track of how many
extra samples are added or dropped over the course of the packet, an estimate
of the difference between the TX and RX chip rates can be obtained.

A tau value of zero indicates there is no rate mismatch between the TX
and RX chip clocks. The cdr tau value corresponds to the number of samples
that were added or dropped by the CDR (each sample point is 1/16MHz
= 62.5 ns). For a fixed chip rate error, this value will vary depending on
the length of the packet so need to convert this to a ppm error for making
decisions. The RX chip clock has adjustment steps of about 2000 ppm so
corrections should be made when this error exceeds about 1000 ppm. Note
that the CDR tau value is a signed number. The ppm error can be calculated
and then further simplified as shown below.

47

error ppm =
106 × (cdr tau value)× 62.5ns

(packet length bytes)× 64 chips
byte
× 500 ns

chip

(1)

cdr_tau_value = analog_rdata[415:400] = ANALOG_CFG_REG__25

chip_rate_error_ppm = (cdr_tau_value * 15625) / (packet_len * 8);

20 Sensor ADC

20.1 Hardware

This subsystem has several mutually exclusive purposes which can be chosen
by modifying analog scan chain settings:

• Interface to an external sensor whose output is an analog voltage

• Battery voltage monitor

• Temperature sensor

0

1

2

3

−

+
ADC

VPTAT
VBAT

4

VPAD
Disconnected

VREF

10
Cortex M0
GPIOs

Figure 13: A pared-down block diagram of the subsystem. The key com-
ponents are (1) the mux which passes the appropriate input to the sensor
system (2) the programmable gain amplifier (PGA)—bypassable—which can
be used to amplify the analog signal by a user-defined amount (3) the analog-
to-digital converter (ADC) which digitizes the analog input and can pass that
information to the on-chip microprocessor or user-facing GPIOs.

Relevant code has been provided at https://github.com/PisterLab/

scum-test-code/tree/master/scm_v3c/sensor_adc. Information on use
can be found in subsequent subsections.

48

https://github.com/PisterLab/scum-test-code/tree/master/scm_v3c/sensor_adc
https://github.com/PisterLab/scum-test-code/tree/master/scm_v3c/sensor_adc

Relevant Subsystem Scan Configuration Bits
Name # Bits Description

sel reset 1 Chooses the source for the ADC reset signal. 0 sources from
the taped-out FSM in digital, and 1 sources from the GPI for
‘adc reset gpi’ (Figure 6).

sel convert 1 Chooses the source for the the-ADC-needs-to-convert signal. 0
sources from the taped-out FSM in digital, and 1 sources from the
GPI for ‘adc convert gpi’.

sel pga amplify 1 Chooses the source for the signal which tells the PGA to amplify. 0
sources from the taped-out FSM in digiatl, and 1 sources from the
GPI for ‘adc pga amplify gpi’.

pga gain 8 Controls the gain of the programmable gain amplifier. Going from
MSB→ LSB, the gain of the PGA is (the value of the binary code)+1,
e.g. 0000 0000 equates to a gain of 1 for the PGA, 0000 0001 a gain
of 2, etc.

adc settle 8 Controls the settling time allowed the ADC for each conversion. Go-
ing from MSB → LSB, the settling time decreases from as the code
increases. 0000 0000 will give the ADC roughly 1.72µs to retrieve all
10 bits, and 1111 1111 will give the ADC roughly 0.35µs to retrieve
all 10 bits.

bgr tune 7 Controls the reference voltage to the LDO. The LSB is the “panic
bit” which sets the reference voltage to the highest possible value
(≈ 1.2V). Otherwise, increasing values (MSB → LSB) leads to a
decreasing output voltage with the lowest possible output value ≈
0.8V

constgm tune 8 Controls the reference current used in the ADC’s comparator and the
PGA’s amplifier. MSB→ LSB, increasing values leads to a decreasing
reference current.

vbatDiv4 en 1 1 enables the VBAT divide-by-4 input to the multiplexer, otherwise
it’s disabled. Note that this does not choose the divide-by-4 as the
output of the multiplexer.

ldo en 1 1 enables the on-chip LDO (Section 20.1.1), otherwise it’s disabled.
input mux sel 2 The selection bits for the multiplexer shown in Figure 13.

pga byp 1 Controls both the PGA bypass and the PGA enable; 1 means the
PGA is disconnected from the signal path, disabled, and bypassed. 0
means the PGA is enabled and included in the signal path.

VDD,always on 7 Controls the voltage reference for the LDO providing VDD,always on.
This particular LDO controls the enable signal for the subsystem’s
regulator, so having its value set too low could lead to issues with
disabling and enabling this subsystem’s LDO. Going from 0 to 127,
increasing the tuning value leads to a decreasing output voltage with
a min of ≈ 0.8V and a maximum of ≈ 1.2V. This is a known issue
when the output of this LDO is set to its minimum value. This has
been verified functional with the subsystem when set to the maximum
voltage.

VDDD 7 Controls the voltage reference for the LDO for a large portion of
digital, including the Cortex M0. If the LDO voltage is set to too low
or high a value, timing violations may occur within digital, leading to
problems with anything which requires the Cortex M0. Going from
0 to 127, increasing the tuning value leads to a decreasing output
voltage with a min of ≈ 0.8V and a maximum of ≈ 1.2V. In testing
so far, leaving this value at the default midpoint setting produces no
noticeable issues. Increased voltages can cause baud rate mismatch
when communicating via UART.

Table 3: Subsystem scan bits which can affect functionality and performance.
The bottom portion includes auxiliary scan settings which aren’t directly
applicable but are still potentially important (read: they can cause problems
if set to undesirable values).

49

20.1.1 LDO

−

+

EN (driven by VDD,always on)

CC Rz

VBAT

VREF

Figure 14: Schematic of the low drop-out regulator. All active blocks are
driven by VBAT unless otherwise specified. VREF is provided by an on-chip
band gap reference circuit (not shown).

20.1.2 PTAT

Vout

VDD,sensor

Figure 15: Schematic (without sizing) of a PTAT cell. Body connections are
tied to ground.

50

20.1.3 PGA

−

+

C0

φ

C0

φ

1× C0

φ

2× C0

φ

4× C0

φ

...
...

φ·b0

φ·b1

φ·b2

VREF,PGA

Vin

Vout

Figure 16: Schematic of the programmable gain amplifier. All active blocks
are driven by VDD,sensor (Section 20.1.1). The reference voltage is provided
by a secondary PTAT (not shown, similar to Section 20.1.2).

20.1.4 ADC

For the love of all things good, why did Cadence think it would take every
block and name them the same thing?!? I know this thing was based off
of Mike Scott’s paper from 2003, but IEEE is down and I can’t pull up the
citation for it. INL, DNL, ENOB vs. frequency

20.2 Initializing Analog Scan Chain

This is done whenever you boot SCM and/or program the analog scan
chain on SCM. C code has been provided in sensor_adc/adc_config.c/

scan_config_adc() which allows you to set the values defined in the upper
half of 3. Call this in scm3C_hardware_interface.c/initialize_mote(). An
example of its use is provided below.

51

1 // SENSOR ADC INITIALIZATION

2 if (1) {

3 unsigned int sel_reset = 0;

4 unsigned int sel_convert = 0;

5 unsigned int sel_pga_amplify = 0;

6 unsigned int pga_gain[8] = {0,0,0,0, 0,0,0,0};

7 unsigned int adc_settle[8] = {1,1,1,1, 1,1,1,1};

8 unsigned int bgr_tune[7] = {0,0,0, 0,0,0,1};

9 unsigned int constgm_tune[8] = {1,1,1,1, 1,1,1,1};

10 unsigned int vbatDiv4_en = 1;

11 unsigned int ldo_en = 0;

12 unsigned int input_mux_sel[2] = {0,1};

13 unsigned int pga_byp = 0;

14

15 // Set all GPIOs as outputs

16 GPI_enables(0x0000);

17 GPO_enables(0xFFFF);

18

19 // Select banks for GPI/O

20 GPI_control(0,0,0,0);

21 GPO_control(9,9,9,9);

22

23 scan_config_adc(sel_reset, sel_convert, sel_pga_amplify,

24 pga_gain, adc_settle,

25 bgr_tune, constgm_tune,

26 vbatDiv4_en, ldo_en,

27 input_mux_sel, pga_byp);

28 }

20.3 Triggering A Measurement

All of the methods described below rely on a command sent over UART, but
the low-level way of triggering a reset relies on the memory-mapped register
ADC REG START. Setting this to 0x1 primes the ADC for reading. If the
on-chip FSM is used to control the ADC, one only needs to wait until the
ADC-related interrupt is triggered. Otherwise, some software to control the
ADC (like that in adc test .c/loopback control adc shot()) will be necessary.

Python functions have been provided in sensor_adc/adc.py which will
be referred to throughout this subsection. Note that this is simply a user

52

guide and assumes you aren’t writing large amounts of additional software for
SCM. There are many permutations of the methods described below which
are possible.

20.3.1 On-Chip FSM

Before getting started, make sure

• Scan settings sel_[reset/convert/pga_amplify] will all need to be set
to 0 so the ADC will receive its control signals from the on-chip FSM.

This uses a memory-mapped register to start the taped-out finite state ma-
chine. The simplest way of starting a conversion this is by feeding SCM
the appropriate command over UART. The function sensor_adc/adc.py/

test_adc_spot() can do this by setting control_mode to ‘uart’.

20.3.2 GPIO Loopback

Before getting started, make sure

• Scan settings sel_[reset/convert/pga_amplify] should all be set to 1
so the ADC will receive its control signals via GPI.

• The function sensor_adc/adc_config.c/loopback_control_config_adc

() should be called when initializing the scan settings for the mote. The
recommend location for calling this is in function scm3C_hardware_interface

.c/initialize_mote(). This enables the appropriate buffers on SCM
to perform GPIO loopback for the control signals for the subsystem,
and it sets the banks appropriately. At the moment, this will overwrite
any previously-defined bank settings.

• Within Int_Handlers.h, there is a section which defines several vari-
ables you will need to set

– cycles_reset: The number of cycles to pull the reset signal low

– cycles_to_start: The number of cycles after resetting until con-
tinuing with the rest of the FSM

– cycles_pga: The number of cycles given allowed for the PGA to
settle

53

This uses software (i.e. the Cortex M0) to step the ADC through its various
states rather than relying on the on-chip FSM to step the ADC. Function
sensor_adc/adc.py/test_adc_spot() can do this by setting control_mode to
‘loopback’.

20.3.3 External GPI

The code for this is currently under construction. For now, please use other
means of triggering a subsystem reading.

20.4 Reading the Output

Python functions have been provided in sensor_adc/adc.py which will be
referred to throughout this subsection. Note that this is simply a user guide
and describes only the baseline methods of reading the subsystem output.
There are many possible permutations of what’s described below.

20.4.1 Memory-Mapped Register

Whenever the on-chip interrupt indicating that the subsystem has completed
its measurement is triggered, the result of that measurement is contained in
memory-mapped register ADC_REG__DATA (you can find this in Memory_Map.h).
The simplest way of retrieving this value upon the interrupt’s trigger is by
having SCM print the register’s value to UART. This is what the current
ISR does, and function sensor_adc/adc.py/test_adc_spot() can read that
by setting read_mode to ‘uart’.

20.4.2 GPO Readout

The code for this is currently under construction. For now, please use other
means of reading the subsystem output.

20.5 Debugging/Known Issues

20.5.1 Supply Bounce

When using the on-chip subsystem LDO with VDD,always on set to a value
≥ 0.5-0.6V lower than VBAT , the enable signal for the subsystem LDO may

54

not be clearly defined, resulting in supply “bouncing” due to the enable
vacillating between on and off.

Solution Set the voltage for VDD,always on within 0.3V of VBAT . Lower volt-
ages have not been verified.

20.5.2 First-Reading 511

When triggering an ADC conversion via on-chip FSM, the first reading after
a power cycle is always all ones save for the MSB (see Section 20.5.3), giving
a reading of 511.

No Solution Unfortunately, this seems to be due to an incorrect startup
at the initial boot of the chip. More specifically, the on-chip FSM doesn’t
reset properly before taking the first reading.

Work In Progress It may be possible to trigger a reset before the first
reading by pulling on the chip soft reset.

20.5.3 MSB “Sticking”

For voltages ≥ VDD,sensor

2
, the MSB of the ADC output is stuck to 0.

Partial Solution When using GPIO loopback control of the ADC, trig-
gering a soft reset after each reading (yikes) avoids this issue. This solution
does not work when using the on-chip FSM to control the ADC

Full Solution When using GPIO loopback control of the ADC, increasing
the ADC settling time seems to have resolved the issue with the MSB. It’s
confirmed that it doesn’t work with the on-chip FSM because adc done never
goes low due to an architectural error where the ADC reset which is needed
between each reading was tied directly to the Cortex M0’s soft reset (which
restarts all software).

55

21 Raw Bit Receive Mode

Note that this block appears to be broken on SCM3C. The shift register itself
appears to be working fine (and thus you can still throw interrupts based on
incoming 32-bit sequences) but the data read by the Cortex from the memory
mapped register is garbage. See slides on Box for more details.

In addition to being connected to the radio FSM, recovered clock and
data are connected to a 32-bit shift register with a correlator and interrupt
capability. The 32-bit correlation target is set via a memory mapped register
along with a programmable threshold. When the Hamming distance between
the current shift register contents and the target is less than the this thresh-
old the “interrupt rawchips startval” interrupt is asserted. There is also a
separate interrupt called “interrupt rawchips 32” that is asserted every time
32 new bits are clocked into the shift register so that the value can be read
by software. By using the start value interrupt to search for the beginning
of a packet and the 32-bit interrupt to successively receive the payload, and
arbitrarily formatted data can be received.

Note that on SCM3C the direction of shifting into this register was re-
versed. Now new bits are shifted in at the LSB position instead of previously
where they were shifted from the MSB direction. This new ordering matches
the ordering from the transmitter.

analog_cfg[147:144] = Correlation threshold

analog_cfg[54:16] = Correlation target value

analog_rdata<287:272> = raw_chips<15:0> offset=0x440000 (LSBs)

analog_rdata<303:288> = raw_chips<31:16> offset=0x480000 (MSBs)

22 802.15.4 Radio Demo Software

22.1 Overview

The goal of the radio demo software was to validate the board support pack-
age (BSP) software development for eventual integration with OpenWSN.
The software executes functionality similar to that found in a TSCH net-
work.

56

22.2 CRC Check

To identify errors during optical programming, the bootlaoder Teensy cal-
culates a CRC value on the code and inserts it into the binary at a specific
memory location. The first thing the mote does after being programmed is
to check the integrity of the program data by calculating its own CRC value
based on instruction memory contents and compares to the value computed
by the bootloader. If they match then execution continues, otherwise the
program halts.

22.3 Initialize Analog Scan Chain

After confirming the integrity of its IMEM contents the mote will program
the ASC. This step initializes all required settings to utilize the radio and
other functionality. At this point the system clock source (HCLK) is also
switched over to system clk sec.

22.4 Optical Calibration

The next step is to perform an initial frequency calibration using the Teensy
as a reference. Since the mote needs bootloaded every time it starts up (no
NVRAM in this generation), this provides an essentially free opportunity to
transfer timing information to the mote. The bootloader will finish optical
programming and then begin sending optical SFD sequences at a fixed 100ms
rate. The timing in the teensy code was adjusted such that the SFD interrupt
rate on the mote should be very close to 100ms. The mote will use these
interrupts happening at a known rate to tune all its on-chip oscillators as
close to their desired values as possible.

22.5 Building a Channel Table

LO tuning remains the biggest challenge for using SCM. Once communication
has been established on all channels then traffic can be used to estimate
frequency errors and apply corrections. First though the appropriate LO
settings for all channels need to be found. There are many ways one could go
about this and there are many underlying details related to monotonic tuning
of the LO. What follows is one idea for extrapolating known information
about one channel to all other 802.15.4 channels. These functions exist in

57

the code base but should not be considered working. Many complications
with LO tuning prevented this strategy from being fully tested. Those tuning
issues need to first be resolved before attempting to build a channel table.
This strategy is also complicated by the high jitter of on-chip clocks that are
available for counting against and thus this strategy may never work well.
This strategy may not be the best way to go about building a channel table
(or it may not work at all) but is included here for reference.

After completing an initial calibration, the mote has a reasonable idea of
what the correct LO code is for RX on channel 11 (at least at this current
temperature). The mote however needs at least an initial guess at what
LO codes it should use for TX and RX on every channel. The LO code is
different for RX and TX on a given channel for a couple reasons: 1) The RX
operates at an intermediate frequency of 2.5 MHz so in RX the LO needs
to be set 2.5MHz below the actual 802.15.4 channel. In TX, due to the way
the modulation works the LO needs to be set 500 kHz above the 802.15.4
channel (modulated bits will cause it to step 1 MHz down in frequency, thus
toggling between +/- 500 kHz around the center value for the channel). 2)
Switching between TX and RX requires turning off the polyphase filter (I/Q
generation in RX) and turning on the power amplifier (PA) in TX. Both of
these actions cause a frequency shift in the LO which is channel dependent.

Starting from the assumption that the mote knows the appropriate LO
code for RX on channel 11 (however that happened, whether it was via the
optical programmer calibration or by blindly searching for beacons) the mote
proceeds to estimate LO codes for other channels by doing the following:

• Activate RX mode and set the LO to the known code for ch11 RX

• Turn on the LO divider and count how many ticks occur in some arbi-
trary time period

• Make a guess at what LO code is appropriate for the next RX channel

• Turn on the LO divider and count how many ticks occur in the same
arbitrary time period

• Tune the LO code based on the ratio of the number of ticks in the new
channel vs ch11 by exploiting their known frequency relationship (ie,
ch11 RX = 2402.5 MHz and ch12 RX = 2407.5 MHz. Their ratio is
24075/24025 = 963/961.)

58

• Repeat this process for all RX channels

• Activate TX mode and set the LO to the best guess at ch11 TX

• Repeat the above process for all TX channels using ratios and compar-
ing the TX counts to the count of ch11 RX

The mote won’t have an accurate idea of what the time period that it is
counting over actually is, but since it’s a ratio the time period will cancel
out as long as it is much greater than the variation caused by the RC clock.
Note that turning the LO divider on and off also causes a frequency shift.

22.6 Acquiring Packet Rate

The mote begins listening on channel 11 and assumes that an OpenMote
is sending 20B packets at a rate of 8 Hz. After SCM hears an appropriate
packet on the channel it is listening to, then it will begin using its timers
to attempt to turn its radio on and off in sequence with the OpenMote. If
the mote hears a packet during its listening period, then it will transmit an
’ack’. The timing of this packet exchange is implemented in a manner similar
to OpenWSN. The schedule is built around an expected packet arrival rate
which is expressed in terms of the number of counts of the 500 kHz RFTimer
(this value doesn’t necessarily have to be 500 kHz but that’s what it is in this
demo code). The RX begins listening for the packet a guard time in advance
of the expected arrival time. The RX hardware is turned on some amount of
time before this to allow it to settle. A watchdog timer is used to detect if a
packet never arrives within +/- a guard time of the expected arrival time. If
the packet is received, then the mote prepares an ’ack’ (just a packet filled
with nonsense). The actual transmission occurs a turnaround time after the
RX was completed. Again the TX hardware is turned on in advance of the
actual communication time to allow it to settle

22.7 Frequency Management

At the end of an ack transmission (which indicates that the RX was successful
otherwise we wouldnt have ack’d) several adjustments are made to correct
for crystal-free issues. This demo assumes that the receiving node should
always update its timing by trusting the transmitting node. These steps

59

don’t necessarily need to be done at the end of the TX ack but should be
completed sometime before the next listening period.

The digital baseband provides an estimate for each packet of the error
in the intermediate frequency, which should be corrected by adjusting the
LO code. There will be variation in this measurement based on noise and
other impairments so the mote needs to keep track of this information on
a per-channel basis. It can then filter the historical information and make
corrections to each channel code. It is assumed here that when a correction
is applied for a RX channel that the same correction should be applied to
that channel’s TX code. It is not yet known if this is the best thing to do or
if there is a better solution.

The mote needs to make sure its RX ADC clock is the correct frequency
since the chip clock is derived from this clock source. The mote uses the
information available from its CDR to calculate a ppm error relative to the
transmit chip clock and will apply a correction if the error is > 1000ppm.

The expected packet arrival time should be updated to correct for the
drift between timers on motes. This is accomplished by monitoring the error
between expected and actual packet arrival time and using that information
to adjust how many ticks the mote thinks is one packet interval. The mote
doesn’t need to update the actual frequency of its RF Timer (which will have
pretty coarse adjustment steps) but if the source it is deriving HCLK from
drifts too much then UART will start encountering errors.

The last clock that the mote should monitor is the TX chip clock. This
can be compared against the RF timer using counters. Since the number of
RF timer ticks that corresponds to the known packet rate is being continu-
ously updated, this should give a fairly accurate source to compare the TX
chip clock against.

22.8 BSP-like Radio Control

An attempt was made to implement the radio control in a manner which
facilitates BSP development for OpenWSN. The relevant functions are listed
below. Since the LO channel tuning is dependent on whether the mote is in
TX or RX mode, the setFrequency() function must be different depending on
whether TX or RX is happening first. The other functions behave as their
names imply and are documented in the code.

void setFrequencyRX(unsigned int channel)

60

void setFrequencyTX(unsigned int channel)

void radio_loadPacket(unsigned int len)

void radio_txEnable()

void radio_txNow()

void radio_rxEnable()

void radio_rxNow()

void radio_rfOff()

void radio_enable_interrupts()

void disable_radio_interrupts()

void rftimer_enable_interrupts()

void rftimer_disable_interrupts()

22.9 Hard-Wired Radio Connection

In order to directly connect the TX/RX using wires instead of the radio for
testing, a few configuration changes are needed. The GPIO input mux on
the FPGA needs to be set to bank 2 to select the clock and data inputs.
The multiplexers for choosing the source of clk/data going to the baseband
need to be set to external GPI. The TX CLK needs to be routed out through
bank 10 of GPO4.

23 Optical Programmer Details

The 3.3V / GND pins on the transmitter board should connect to their
corresponding pins on Teensy 3.6 and the DATA connection should connect
to pin 24. The Teensy code should be downloaded from the repo.

References

[1] David Burnett. “Crystal-free wireless communication with relaxation
oscillators and its applications”. PhD thesis. PhD thesis, EECS Depart-
ment, University of California, Berkeley, 2019.

[2] Filip Maksimovic. “Monolithic Wireless Transceiver Integration”. PhD
thesis. PhD thesis, EECS Department, University of California, Berke-
ley, 2018.

61

SFH4555 Diode
(mount from bottom)

2N7002

R = 14.7

Decap, 2x 1uF

R = 75

Red LED
(475-3121-1-ND)

R = 0

R = 100k

0.1” Headers to Teensy
(mount from top)

Bottom

Figure 17: Programmer PCB

[3] Sahar Mesri. “Design and user guide for the single chip mote digital
system”. PhD thesis. Master’s thesis, EECS Department, University of
California, Berkeley, 2016.

[4] Bradley Wheeler. “Low Power, Crystal-Free Design for Monolithic Re-
ceivers”. PhD thesis. PhD thesis, EECS Department, University of Cal-
ifornia, Berkeley, 2019.

[5] Joseph Yiu. The Definitive Guide to ARM Cortex-M0 and Cortex-M0+
Processors. Academic Press, 2015.

62

Figure 18: Assembled Programmer. A 3cm section of a plastic straw is
attached to serve as a eye safety standoff and to help aim the programmer.

63

Figure 19: Programmer after attaching to Teensy 3.6 uController. It is
recommended to place some tape on the programmer board between it and
the uController pins to avoid incidental shorting as the headers tend to have
enough play to allow contact.

64

	Intro
	Quick Start - Hello World
	Where To Go For Resources and Help
	GitHub
	Box
	BWRC Repo
	OpenWSN Repo
	JIRA
	EECS Repo

	Chip Overview
	Analog Scan Chain
	Memory Mapped Registers
	Pads
	Voltage Domains

	PCB Overview
	Electrical Specification
	Bootloading
	Optical Bootloading
	3-Wire Bus Bootloading
	Mote Startup
	Optical Boot Troubleshoot

	Misc Optical Bootload Related Items
	Optical Data Transfer
	Optical Timing Transfer
	Lighthouse Localization Receiver
	Future Feature Idea: Hardware IDs & Calibration Data
	Future Feature Idea: RF Bootloader

	GPIO
	Interrupts
	UART
	SPI
	Clock Configuration
	Frequency Counters
	Timers
	LO, PA, and Divider Hardware Details
	Analog Scan Chain
	Cortex Code
	Common Configurations
	Receive Mode (RF only)
	Transmit Mode - 802.15.4
	Transmit Mode - BLE

	RF Receiver Analog Scan Chain
	Mixer Bias
	Transimpedance Amplifiers
	Gain Control
	Filters
	ADC
	Clock Generation
	LDO and Reset
	Debug Path

	Power On Control
	Aux Digital LDO
	Power Sequencing
	TX/RX Switching

	Digital Baseband
	RSSI
	Link Quality Indicator
	Chip Rate Error Estimate

	Sensor ADC
	Hardware
	LDO
	PTAT
	PGA
	ADC

	Initializing Analog Scan Chain
	Triggering A Measurement
	On-Chip FSM
	GPIO Loopback
	External GPI

	Reading the Output
	Memory-Mapped Register
	GPO Readout

	Debugging/Known Issues
	Supply Bounce
	First-Reading 511
	MSB ``Sticking''

	Raw Bit Receive Mode
	802.15.4 Radio Demo Software
	Overview
	CRC Check
	Initialize Analog Scan Chain
	Optical Calibration
	Building a Channel Table
	Acquiring Packet Rate
	Frequency Management
	BSP-like Radio Control
	Hard-Wired Radio Connection

	Optical Programmer Details

