
Design and User Guide for the Single Chip Mote

Digital System

Sahar Mesri

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-71

http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-71.html

May 13, 2016

Copyright © 2016, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Design and User Guide for the Single Chip Mote Digital System

by Sahar M. Mesri

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of Cal-

ifornia at Berkeley, in partial satisfaction of the requirements for the degree of Master of Science,

Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Kristofer S. J. Pister

Research Advisor

Date

* * * * * *

Professor Ali M. Niknejad

Second Reader

Date

Design and User Guide for the Single Chip Mote

Digital System

Sahar M. Mesri

29 April 2016

Abstract

In order to create a low-power and lightweight wireless sensor node for the control
of MEMS microrobots, the Single Chip Mote project aspires to integrate a fully-
functioning microprocessor, radio, sensors, and solar cells onto a single die, while also
eliminating the need for external components through careful architectural design.
This report presents the past two years of work on the design of the Single Chip
Mote digital system, complete with an ARM Cortex-M0 microprocessor, control
logic for an IEEE 802.15.4 radio, special-purpose radio timers, and ADC interface.
This includes details on the design and contents of the Verilog code used to describe
the hardware, and the software written to run and test the Single Chip Mote digital
system. The required tools and testing procedures are also explained, along with
the details required to convert this FPGA-based design to an ASIC design ready
for tapeout. The intention behind this report is to pass on the knowledge acquired
throughout the course of this project to those who are working to improve and
iterate on this design. This report also presents preliminary power, area, and timing
characteristics for the ASIC version Single Chip Mote digital system.

1

Acknowledgments

First and foremost, I would like to thank my adviser, Professor Kristofer S. J.
Pister, for his overwhelming support and mentorship throughout my undergraduate
and graduate studies at UC Berkeley. His door was always open when I needed
academic, research, and career advice, and his vast breadth of knowledge never
ceases to amaze (and occasionally intimidate) me. I am honored to be one of his
students.

I would also like to thank the Single Chip Mote team, Dr. Osama Khan, David
Burnett, Brad Wheeler, and Filip Maksimovic, for their friendship, guidance, and
inspiration during the course of this project and my graduate studies. I could not
ask to work with a better group of engineers, and I hope that we can continue to
collaborate on projects in the future.

I would also like to express my gratitude towards all of the students, postdocs,
and visiting scholars both past and present within Professor Pister's research group,
for their friendship, encouragement, and support, as well as the students and sta�
in UC Berkeley's Ubiquitous Swarm Lab.

Dedication

To Mike Mesri, Zohreh Mesri, and Chris Case for their continued love, support,
and encouragement throughout my undergraduate and graduate studies.

2

Contents

1 Introduction 9

2 Getting Started 17
2.1 Git Repository . 17
2.2 ARM Cortex-M0 DesignStart Processor 17
2.3 FPGA Boards . 19

2.3.1 Digilent Nexys 3 . 19
2.3.2 Digilent Nexys 4 DDR . 19

2.4 Hardware Development Tools . 19
2.4.1 Xilinx ISE Design Suite 14.6 19
2.4.2 Digilent Adept . 22
2.4.3 Xilinx Vivado Design Suite . 26

2.5 Software Development Tools . 28
2.5.1 Keil uVision5 . 28
2.5.2 Bin2coe . 28

3 Single Chip Mote Hardware 29
3.1 ISE Project Settings . 29

3.1.1 Artix-7 . 29
3.1.2 Spartan-6 . 30
3.1.3 User Constraints File . 31

3.2 Digital System Architecture Overview 32
3.3 ARM Cortex-M0 Memory Map Speci�cation 33
3.4 AMBA 3 AHB-Lite Protocol . 35
3.5 AMBA 3 APB Protocol . 37
3.6 Header Files and Parameters . 37

3.6.1 SYS_PROP.vh . 38
3.6.2 REGISTERS.vh . 39

3.7 Module Hierarchy . 40
3.8 uCONTROLLER . 40

3.8.1 Description . 40
3.8.2 Input/Output Ports . 40
3.8.3 Design Details . 42

3.9 CORTEXM0DS . 43
3.9.1 Description . 43
3.9.2 Input/Output Ports . 43

3.10 cortexm0ds_logic . 44
3.10.1 Description . 44

3

3.11 PON . 44
3.11.1 Description . 44
3.11.2 Input/Output Ports . 44
3.11.3 Design Details . 45

3.12 pb_debounceRESET . 48
3.12.1 Description . 48
3.12.2 Input/Output Ports . 48
3.12.3 Design Details . 48

3.13 ClockDiv . 49
3.13.1 Description . 49
3.13.2 Input/Output Ports and Parameters 49
3.13.3 Design Details . 49

3.14 AHBDCD . 49
3.14.1 Description . 49
3.14.2 Input/Output Ports . 50
3.14.3 Design Details . 50
3.14.4 Adding Another AHB Slave 51

3.15 AHBMUX . 51
3.15.1 Description . 51
3.15.2 Input/Output Ports . 51
3.15.3 Design Details . 52
3.15.4 Adding Another AHB Slave 53

3.16 AHBLiteArbiter_V2 . 53
3.16.1 Description . 53
3.16.2 Input/Output Ports . 54
3.16.3 Design Details . 55

3.17 AHBDCDsub . 57
3.17.1 Description . 57
3.17.2 Input/Output Ports . 57
3.17.3 Design Details . 58
3.17.4 Adding Another AHB Slave 58

3.18 AHBMUXsub . 58
3.18.1 Description . 58
3.18.2 Input/Output Ports . 58
3.18.3 Design Details . 59
3.18.4 Adding Another AHB Slave 59

3.19 AHBIMEM . 59
3.19.1 Description . 59
3.19.2 Input/Output Ports and Parameters 59
3.19.3 Design Details . 60
3.19.4 Register Interface . 62

3.20 instruction_ROM . 63
3.20.1 Description . 63
3.20.2 Input/Output Ports . 63
3.20.3 Design Details . 63
3.20.4 Initialization . 63

3.21 instruction_RAM . 64
3.21.1 Description . 64

4

3.21.2 Input/Output Ports . 64
3.21.3 Design Details . 64

3.22 AHBDMEM . 65
3.22.1 Description . 65
3.22.2 Input/Output Ports and Parameters 65
3.22.3 Design Details . 65
3.22.4 Register Interface . 66

3.23 dmem_ram . 66
3.23.1 Description . 66
3.23.2 Input/Output Ports . 66
3.23.3 Design Details . 66

3.24 DMA_V2 . 67
3.24.1 Description . 67
3.24.2 Input/Output Ports . 67
3.24.3 Design Details . 68
3.24.4 Register Interface . 70

3.25 RFcontroller . 71
3.25.1 Description . 71
3.25.2 Input/Output Ports and Parameters 71
3.25.3 Design Details . 73
3.25.4 Register Interface . 82

3.26 tx_�fo2 . 92
3.26.1 Description . 92
3.26.2 Input/Output Ports . 92
3.26.3 Design Details . 93

3.27 rx_�fo . 95
3.27.1 Description . 95
3.27.2 Input/Output Ports . 95
3.27.3 Design Details . 96

3.28 spreader . 98
3.28.1 Description . 98
3.28.2 Input/Output Ports . 98
3.28.3 Design Details . 98

3.29 symbol2chips . 100
3.29.1 Description . 100
3.29.2 Input/Output Ports . 102
3.29.3 Design Details . 102

3.30 corr_despreader . 102
3.30.1 Description . 102
3.30.2 Input/Output Ports and Parameters 103
3.30.3 Design Details . 103

3.31 correlator . 106
3.31.1 Description . 106
3.31.2 Input/Output Ports and Parameters 106
3.31.3 Design Details . 107

3.32 bit_sync . 109
3.32.1 Description . 109
3.32.2 Input/Output Ports . 109

5

3.32.3 Design Details . 110
3.33 bus_sync . 110

3.33.1 Description . 110
3.33.2 Input/Output Ports and Parameters 110
3.33.3 Design Details . 111

3.34 crcParallel . 112
3.34.1 Description . 112
3.34.2 Input/Output Ports . 112
3.34.3 Design Details . 113

3.35 RFTIMER . 113
3.35.1 Description . 113
3.35.2 Input/Output Ports and Parameters 113
3.35.3 Design Details . 116
3.35.4 Register Interface . 121

3.36 compare_unit . 131
3.36.1 Description . 131
3.36.2 Input/Output Ports and Parameters 131
3.36.3 Design Details . 132

3.37 capture_unit . 132
3.37.1 Description . 132
3.37.2 Input/Output Ports and Parameters 132
3.37.3 Design Details . 134

3.38 AHB2APB . 135
3.38.1 Description . 135
3.38.2 Input/Output Ports . 135
3.38.3 Design Details . 136

3.39 APBMUX . 136
3.39.1 Description . 136
3.39.2 Input/Output Ports . 137
3.39.3 Design Details . 137
3.39.4 Adding Another APB Slave 138

3.40 APBUART . 138
3.40.1 Description . 138
3.40.2 Input/Output Ports and Parameters 138
3.40.3 Design Details . 139
3.40.4 Register Interface . 140

3.41 APBADC_V2 . 140
3.41.1 Description . 140
3.41.2 Input/Output Ports . 141
3.41.3 Design Details . 141
3.41.4 Register Interface . 142

3.42 APB_ANALOG_CFG . 142
3.42.1 Description . 142
3.42.2 Input/Output Ports . 143
3.42.3 Design Details . 143
3.42.4 Register Interface . 144

3.43 APBGPIO . 144
3.43.1 Description . 144

6

3.43.2 Input/Output Ports and Parameters 145
3.43.3 Design Details . 145
3.43.4 Register Interface . 145

3.44 chipscope_debug . 146
3.45 Deprecated Modules . 147

3.45.1 clk_div22 . 147
3.45.2 pb_debounce . 147
3.45.3 DMA . 148
3.45.4 AHBTIMER . 148
3.45.5 AHB2LED . 148
3.45.6 AHB2MEM_V2 . 148
3.45.7 AHB2SRAMFLSH . 148
3.45.8 AHB2SRAMFLSH_V2 . 149
3.45.9 AHB2SRAMFLSH_V3 . 149
3.45.10AHBROM . 149
3.45.11AHB_MASTER_MUX . 149
3.45.12 startSymbolDetect . 149
3.45.13APBADC . 150
3.45.14APBTSCHTimer . 150
3.45.15APB_PWM_simple . 150
3.45.16APBDO . 150
3.45.17APBLED . 150
3.45.18APBSW . 150

4 Single Chip Mote Software 152
4.1 Keil Project Settings . 152

4.1.1 New Project and Device Selection 152
4.1.2 Target Options . 154
4.1.3 Scatter File Settings . 158

4.2 Required Assembly, Header, and C Files 158
4.2.1 cm0dsasm.s . 158
4.2.2 Memory_Map.h . 161
4.2.3 retarget.c . 161
4.2.4 main.c . 162

4.3 Memory Mapped Peripherals . 162
4.3.1 Radio Timer . 162
4.3.2 Radio Controller and DMA 165
4.3.3 UART . 168
4.3.4 ADC Controller . 170
4.3.5 Analog Con�guration Registers 171
4.3.6 General-Purpose Input and Output Registers 171

4.4 Current Demo Software . 172

5 Bootloader 178
5.1 Reset Signals and Bootloading . 178
5.2 Instruction ROM on the Single Chip Mote 179
5.3 Instruction RAM on the Single Chip Mote 179
5.4 3 Wire Bus Interface . 179
5.5 Bootload Hardware on Nexys 3 . 180

7

5.6 Bootload Firmware for ARM Cortex-M0 180
5.6.1 Firmware Essentials . 180
5.6.2 Application Interrupt and Reset Control Register 181
5.6.3 AHB Slave Interface for Bootloading 181
5.6.4 Bootloading with the 3 Wire Bus 182
5.6.5 Bootloading with the AHB Slave Interface 182
5.6.6 Current Firmware Implementation 182

5.7 Loading Software Using the Bootloader 183
5.7.1 Connecting UART . 183
5.7.2 Using Nexys 3 to Load Nexys 4 DDR 184
5.7.3 Using Nexys 3 to Load Nexys 3 185

5.8 Connecting Two FPGA Boards for Simulated Packet Transmission . . 187

6 Testing 189
6.1 Simulation Testing Using ISim . 189

6.1.1 Original Testbenches for Spartan 6 189
6.1.2 Artix 7 Testbenches and Improved Testing Procedure 190
6.1.3 Using ISim . 191

6.2 Real-Time Testing on FPGA . 194
6.2.1 Test Programs . 196
6.2.2 ChipScope . 196

7 Transitioning to ASIC 198
7.1 Power-On Reset and Clock Generator 198
7.2 Memories . 199
7.3 Scan Chain Insertion and Debug Interface 199
7.4 Integrated Logic Analyzer . 200
7.5 Optical Serial Interface . 200
7.6 Changes to Top-Level IOs . 201

8 Conclusion 202

A Appendix 203
A.1 AHBLiteArbiter_V2 State Transition Table 203

Bibliography 208

8

Chapter 1

Introduction

The term �Smart Dust� was originally coined by Professor Kris Pister to describe
low-cost, low-maintenance, and unobtrusive wireless sensor nodes on a micro scale.
These motes form interconnected mesh networks to communicate with one another
and transmit sensor information. Sprinkling this dust over a �eld, on a road, or
inside an o�ce could provide valuable sensor data for a variety of applications...
until the dust is swept away or thrown in the trash. On the other hand, mobile
dust, in the form of autonomous microrobots, would be built with special MEMS
devices that enable them to crawl or even �y. A swarm of these microrobots could
space themselves out within a target area for optimal coverage, reposition themselves
to areas with better wireless connectivity or illumination for their solar cells, or even
mount a rescue for their brethren trapped within the depths of a Roomba.

While these ideas may appear to be more suited for science-�ction than reality,
graduate students in Professor Pister's research group at UC Berkeley are actively
designing MEMS structures for the purposes of microrobot movement and �ight.
However, before these robots can take their �rst tiny steps or �y o� the surface
of a lab bench, they will need a small but fully-functioning wireless sensor node
for control and communication. The Single Chip Mote project aims to design an
autonomous wireless sensor node with all external components integrated onto a
single IC, without sacri�cing the functionality needed for controlling swarms of mi-
crorobots.

Wireless Sensor Nodes and the Internet of Things

The recent rise in the popularity of the �Internet of Things� (IoT) has fueled the
demand for consumer-quality wireless sensor node devices. While the availability
and variety of these nodes continues to grow, the increasing popularity of IoT de-
vices brings forth challenges in low-power communication and interoperability. The
wireless standards used in laptops and cell phones such as WiFi and LTE are too
power-hungry to be used on small wireless sensor nodes. Bluetooth Low Energy is
appealing due to its compatibility with laptops and cell phones, at the cost of the
associated licensing fees. It also does not support the creation of mesh networks.
IEEE Standard 802.15.4, entitled Low-Rate Wireless Personal Area Networks, is
also a popular choice since it de�nes the PHY and MAC layers underlying many
other protocols commonly found on commercial motes. This standard is designed
speci�cally for short-range, low-power, and low-data-rate application, and does not
require licensing.

9

The OpenWSN project [26] aims to create an open-source implementation of the
complete protocol stack for IoT wireless sensor nodes with 802.15.4 radios. Open-
WSN is compatible with a variety of software and hardware platforms, allowing
di�erent motes to communicate with one another and form mesh networks. Many
of the top contributors to this project are former students and visiting scholars from
Professor Pister's research group, and Professor Pister himself considers OpenWSN
the ideal software platform for controlling and communicating with swarms of au-
tonomous microrobots.

When Small is Not Small Enough

A quick overview of commercially-available wireless sensor nodes shows that many
of these general-purpose motes have 8, 16, or 32-bit microprocessors running at
frequencies on the order of 1-100MHz, 802.15.4 compliant radios, and a variety of
inputs and outputs for analog and digital sensors. With these speci�cations, the
motes are certainly capable of running OpenWSN and other applications within a
mesh network. Their power consumption tends to be on the order of 1mW-1W while
awake, requiring a battery or USB power. While these motes are small, able to �t
within the palm of a hand, the weight of the battery and PCB itself makes them too
large and heavy to be used for microrobotic control and communication. Without the
bene�t of energy harvesting, these motes also need to have their batteries replaced
every few days or perhaps weeks. Examples of these motes include the TelosB and
OpenMote-CC2538, both with OpenWSN support [14].

Research projects involving low-power motes tend to focus more on cramming
commercial hardware onto tiny PCBs than in new embedded architectures for low-
power applications. The designs presented in [27], [28], and [7] are coin-sized, low-
power, and unobtrusive motes optimized for infant observation, energy sensing, and
transportation monitoring. And yet, all three are remarkably similar: a small 8-bit
microprocessor, one or more PCBs stacked on top of one another, a coin-cell battery,
and radio duty-cycling for energy savings. These motes perform the same main
function as well: sample, transmit, sleep, and repeat. Given the simplicity of their
microprocessors, these motes are not able to implement a complex protocol stack
for mesh networks. [27] and [7] also require their own base stations to communicate
with the motes, whereas motes using IEEE 802.15.4 radios can communicate with
any other mote or base station with an 802.15.4 transceiver. While these designs
succeed in lowering energy consumption, they still require batteries that may only
last for a few weeks, and the combination of the PCB and battery is still too heavy
for a microrobot.

The authors of [18] claim to have developed the world's smallest wireless sensor
node by designing a custom IC for their signal processing and data transmission.
The custom IC die is directly bonded to a MEMS die containing all of the required
sensors. This mote still requires an external antenna, which is fabricated using a
thin �exible substrate instead of a PCB. The mote uses solar cells in combination
with a rechargeable battery for longer battery life; it can also run without a battery
as long as there is su�cient illumination. This mote is small, lightweight, and has
minimal external components. However, the major downside of the design in [18] is
the lack of a general-purpose microprocessor, as it is designed for the sole purpose
of sampling and transmitting data.

Perhaps the best attempt thus far towards full integration is the Michigan Micro

10

Mote [20], a series of thin layers stacked like LEGOs in order to form a complete
wireless sensor node. With as many as eight di�erent layers containing the micropro-
cessor, radio, sensors, and other components, the mote measures at just 2×4×4mm3,
and has an incredibly low standby current of 2nA. The mote can be powered com-
pletely via ambient light through its solar cells, and contains a battery layer to store
any excess harvested energy. The only potential downside to this design is the in-
creased complexity when manufacturing, aligning, and bonding eight di�erent dies.
This problem would only get worse when integrating microrobots into the design,
as this would require a ninth layer for the robot body.

Finally, the 24/60GHz passive radio designed here at Berkeley [31] proves that
a low-power radio relying entirely on energy harvesting is possible on a single die.
Unfortunately, the chip relies on energy scavenging from a high power RF source,
and this asymmetric communication link means that the chip behaves more like an
RFID tag instead of an autonomous computer. As a result, two of these radios
cannot directly communicate with one another, and are not well-suited for forming
a network of microrobots. Also, both the 24GHz receiver and 60GHz transmitter
are not compliant with any current IoT standards.

Single Chip Mote to the Rescue

The Single Chip Mote project intends to combine the generality and processing
capability of these not-so-small commercial sensor nodes with the lightweight form
factor and low-power techniques used in the tiny, specialized wireless sensor nodes.
The high-level block diagram in Figure 1.1 shows the various subsystems that must
be integrated onto a single die in order for this project to succeed. While this project
is still a work in progress, the �nal version of the Single Chip Mote will contain a
fully-functional 32-bit ARM Cortex-M0 microprocessor, a low-power 2.4GHz IEEE
802.15.4 compatible radio, energy-harvesting solar cells, and an on-chip oscillator
to create an autonomous wireless sensor node on a single CMOS die (or possibly a
CMOS die bonded to a MEMS die). Without the need for any external components,
a battery, or a PCB, the Single Chip Mote is the ideal microcontroller for the future
swarms of autonomous microrobots, each with a lightweight yet fully-capable brain
for performing actions beyond the simple observe and report. The addition of the
OpenWSN protocol stack allows for these robots to create an extensive and adaptive
mesh network, and communicate with a variety of IoT hardware platforms and
sensors supporting OpenWSN.

Single Chip Mote Digital System

The work presented in this report lays out the foundation for the digital components
of the Single Chip Mote. A tested and functioning FPGA prototype of the Single
Chip Mote digital system complete with an ARM Cortex-M0 microprocessor, radio
controller, custom radio timer, and ADC interface is presented, along with the tools
and procedures for designing hardware, writing software, and verifying functionality.
A high-level block diagram of the Single Chip Mote digital system is shown in Fig-
ure 1.2. This is far from the �nal iteration of the Single Chip Mote digital system;
the design lacks support for integrated sensors, periodic sensing without interven-
tion from the microprocessor, power management and low-power modes, and other
potential hardware accelerators to handle repetitive and energy-consuming tasks

11

Radio Printed Battery
Solar
Cell

ARM
M0

Memory Power
Management

Accelerators
e.g. Analytics,
Security

Frequency &
Timing Reference.
MEMS Interface.

Figure 1.1: High-level block diagram of the Single Chip Mote and its subsystems

normally executed in software. As an example of hardware acceleration, OpenWSN
uses hardware timers to wake up the microprocessor for each step involved in sending
a packet over the radio (such as copying packet data, turning on the radio, telling
the radio to send, listening for a response). The current Single Chip Mote digital
system has custom timers designed to automatically trigger the actions required to
send a packet without waking up the microprocessor, and the overall process re-
quires less energy than a traditional microcontroller. The continuation and success
of this project depends on the collaboration between digital designers and embed-
ded systems developers in identifying potential processes that can be more e�ciently
carried out in hardware.

Preliminary Results

Preliminary results already show the potential for improvement when using the
Single Chip Mote in place of existing wireless sensor nodes. Using the Verilog code
described in this report, the Single Chip Mote digital system was synthesized, placed,
and routed using Synopsys Design Compiler and Synopsys IC Compiler to obtain
estimates for the area, power, and timing characteristics. Figure 1.3 shows an image
of the complete design. The technology used for this design is TSMC 65nm LP, with
a clock frequency of 5MHz and an operating voltage of 1.2V . The synthesis scripts
are constrained to use only high threshold voltage (HVT) standard cells to reduce
leakage current. While the digital system requires a additional debug hardware and
improved �oorplanning before tapeout, these initial results provide a more accurate
estimate for evaluating this design relative to the goals of the project.

The target clock period of 200ns (5MHz clock frequency) is relatively slow in a
65nm process, as evidenced by the ample critical path slack of 182ns. While this
design could easily run at faster clock frequencies, 5MHz was chosen in order to
reduce dynamic power in the digital domain, as well as the power required by the
on-chip oscillator for clock generation.

The dynamic power for this design is 139µW , and the leakage power is 17.8µW .
These values are calculated using an operating voltage of 1.2V , and can be fur-
ther improved by scaling down the operating voltage. The LP (low-power) process
was chosen since its high-threshold transistors signi�cantly reduce leakage current.
The main cost is that operating voltages are typically higher than in GP (general-

12

AHBIMEM RFTIMERDMA_V2 AHB2APB

ARM Cortex-M0

AHBLite

AHBDMEM RFCONTROLLER

AHBLite

AHBLiteArbiter_V2

APBADC_v2

APBUART

APB_ANALOG_CFG

APBGPIO

A
P
B

Figure 1.2: High-level block diagram of the Single Chip Mote digital system

Figure 1.3: Preliminary layout for the Single Chip Mote digital system

13

purpose) processes in order to have the same on-current and run at similar speeds.
However, since the Single Chip Mote digital system has a relatively slow clock fre-
quency, it is acceptable to operate these transistors at a lower operating voltage
and still meet timing requirements. Since dynamic power scales with V 2

dd, reducing
the operating voltage to 0.9V reduces the dynamic power to 78.3µW . Since leakage
power scales with Vdd, reducing the operating voltage to 0.9V reduces the leakage
power to 13.4µW . Therefore, at 0.9V , the Single Chip Mote digital system has
a power budget of 91.7µW . Reducing voltage requires that the standard cells are
re-characterized at 0.9V , since this information is not provided by TSMC.

The initial Single Chip Mote design does not have any power management hard-
ware, clock gating, or power gating. Therefore, this design does not have any low
power modes like the commercial microprocessors. However, the leakage power rep-
resents the power consumed when the Cortex-M0 is idle or asleep, and the sum of
dynamic and leakage power indicates the power consumed while the Cortex-M0 is
active. These results can be compared to the active and idle power consumption of
commercial motes. The future addition of power gating to the Single Chip Mote
will allow for more direct comparison to the low power modes of commercial micro-
controllers. Also note that the power consumption reported does not include the
radio or any additional hardware outside of the digital system.

One of the more popular microcontroller boards used for OpenWSN is the TelosB.
This board contains the TI MSP430 microcontroller, which has an input voltage
range of 1.8V to 3.6V , and an active current of 330µA at 1MHz and 2.2V , according
to the datasheet [21]. These measurements indicate an active power of 726µW . The
datasheet does not speci�cally state the current draw while the CPU is idle, but
it does have the current draw for four of the �ve low power modes: 50µA, 11µA,
1.1µA, and 0.2µA. These low power modes use clock gating, power gating, and
powering down oscillators to reduce current draw. At 2.2V , the resulting power for
each of the measured low power modes is 110µW , 24.2µW , 2.42µW , and 0.44µW .
The active power of the Single Chip Mote digital system is much smaller than that
of the MSP430, while still running at a higher frequency. Although the MSP430
low power modes cannot be directly compared to the idle power of the Single Chip
Mote, it is clear that the Single Chip Mote, without any clock or power gating, has
lower power while idle than the MSP430 does in its �rst low power mode.

Another board developed speci�cally for OpenWSN development is the OpenMote-
CC2538, which uses the TI CC2438 microcontroller. According to the datasheet [6],
the CC2538 has an input voltage range of 2V to 3.6V , and its current draw varies
based on which peripherals are active. The current draw while the CPU is run-
ning and clocked with an RC oscillator (and the radio, crystals, and peripherals are
turned o�), is 7mA. The datasheet does not list the current draw while idle, but
it does have three low power modes implemented using clock gating, power gating,
and powering down oscillators. These three low power modes have a current draw
of 0.6mA, 1.3µA, and 0.4µA. Assuming an input voltage of 2V is used, the power
while active is 14mW , and the power during the three low power modes is 1.2mW ,
2.6µW , and 0.8µW . The active power of the Single Chip Mote digital system is
much smaller than that of the CC2538. Although the CC2538 low power modes
cannot be directly compared to the idle power of the Single Chip Mote, it is clear
that the Single Chip Mote, without any clock or power gating, has lower power while
idle than the CC2538 does in its �rst low power mode.

14

While these numbers are optimistic, the main reason for the improvement is
most likely due the use of the 65nm LP processes. The Single Chip Mote digital
system also has signi�cantly fewer on-chip peripherals than the MSP430 or CC2538,
reducing both dynamic and leakage power. The CC2538 also uses an ARM Cortex-
M3 processor, which requires more power when compared to the ARM Cortex-M0.

Area is also an important consideration, since this chip must be light enough
to be carried by a MEMS microrobot. The preliminary design for the Single Chip
Mote digital system has a total cell area of 856600µm2, which easily �ts within
a die area of 1mm2. Assuming an incident power of 1mW per mm2 in direct
sunlight, CMOS solar cells with at least 10% conversion e�ciency should be able
to provide 100µW per mm2 of die area in direct sunlight. Therefore, this design
(when run with an operating voltage 0.9V) requires approximately 1mm2 of solar
cells to power the Single Chip Mote digital system. It is estimated that the analog,
radio, and voltage converters for the Single Chip Mote will require 2mm2 of area
for the circuits themselves, and 2mm2 of area for additional solar cells. With these
numbers in mind, the Single Chip Mote requires a total die area of 6mm2. Given
that the thickness of the die is about 200µm, and the density is similar to that of
crystalline silicon (2.33g/cm3), the estimated mass of the die is 2.8mg.

Researchers in our group are currently designing MEMS motors and legs for
walking microrobots. Each leg outputs a downward force of 300µN , and can move
a mass of 30mg. The mass of the legs themselves are 15mg each, which allows for
15mg of payload per leg. With these values in mind, a one-legged MEMS microrobot
generates enough downward force to support the weight of the Single Chip Mote.

Future Work

While the RTL design of the preliminary Single Chip Mote digital system is com-
plete, there is still more work required before the Single Chip Mote is ready for
widespread use. The Single Chip Mote team submitted a tapeout in March 2016
containing the �rst version of the analog and radio circuits, which will be fabricated
and tested in May 2016. Building o� of the results of the �rst tapeout, the team is
targeting a second tapeout in August 2016, which will include the �rst version of the
digital system (as described in this report) and the second version of the analog and
radio circuits. The results of this second tapeout, as well as feedback from software
developers from the OpenWSN project, will determine the direction of this project
in 2017 and beyond.

Report Outline

The rest of this report covers the details of the Single Chip Mote digital system
design, as well as the development tools and testing procedures. Chapter 2 pro-
vides an overview of the tools for hardware development for the FPGA and software
development for the Cortex-M0 microprocessor, including the basics of their instal-
lation and use. Chapter 3 contains a detailed explanation of the Single Chip Mote
digital system hardware, and chapter 4 demonstrates how to write software that
uses the hardware peripherals. Chapter 5 covers the details on loading software
onto an FPGA or ASIC containing the Single Chip Mote digital system. Chapter 6
describes the current testing procedures, including simulation and real-time veri�ca-
tion. Chapter 7 details the changes required to convert the Single Chip Mote digital

15

system from an FPGA design to an ASIC design. Chapter 8 concludes this report
with a discussion the accomplishments of this project and areas for improvement.
The bibliography beginning on page 210 contains a list of the references included in
this report.

16

Chapter 2

Getting Started

This chapter is a basic introduction into the hardware and software tools used for
the development of the Single Chip Mote digital system. While the details on the
design of this system are presented in later chapters, the purpose of this chapter is
simply to introduce these tools and provide basic instructions in their installation
and use. This guide is by no means comprehensive and further experimentation and
study is required in order to truly understand and master the use of these tools.

2.1 Git Repository

All of the source code and project �les for this design is found on the following git
repository:
https://repo.eecs.berkeley.edu/git/projects/pistergroup/scm-digital.git

The repository contains two main directories, one for source code and one for
project �les speci�c to the hardware and software development environments. The
source code section further divides into hardware and software code, and each of
those sections divide further based on FPGA target or software project. The project
�les directory is also divided into sections for hardware and software IDEs, and each
of those sections also divide further based on FPGA target or software project. This
hierarchy is shown in Figure 2.1.

There is also a deprecated repository containing the history of the project dur-
ing its early development. This repository has been maintained solely for historical
purposes:
https://repo.eecs.berkeley.edu/git/projects/pistergroup/singlechip-digital.

git

The information in this user guide is meant for those using the latest source code
found on the current repository and may not be applicable to the code found on the
deprecated repository.

2.2 ARM Cortex-M0 DesignStart Processor

The digital microprocessor used for this system is the ARM Cortex-M0 DesignStart
processor [11] [5], provided at no cost by ARM for educational purposes. The
processor is fully software-compatible with the commercial Cortex-M0; however, the
provided Verilog is obfuscated and does not support JTAG debugging.

17

https://repo.eecs.berkeley.edu/git/projects/pistergroup/scm-digital.git
https://repo.eecs.berkeley.edu/git/projects/pistergroup/singlechip-digital.git
https://repo.eecs.berkeley.edu/git/projects/pistergroup/singlechip-digital.git

/scm-digital

/proj

/ise

/artix7

/SingleChipMote # ISE project files for main digital

system implemented on Artix-7

/testbench # ISE project files for testbenches

/spartan6

/bootloader # ISE project files for the bootloading

hardware implemented on Spartan-6

/testbenches # ISE project files for testbenches

/uRobotDigitalController # ISE project files for main digital

system imlpemented on Spartan-6

/keil

/firmware # Keil project files for bootloading

software

/uRobotDigitalController # Keil project files for main digital

system software

/src

/hw

/artix7

/uRobotDigitalController # Verilog files for main digital system

implemented on Artix-7

/spartan6

/bootloader # Verilog files for bootloading hardware

implemented on Spartan-6

/uRobotDigitalController # Verilog files for main digital system

implemented on Spartan-6

/sw

/firmware # C source and assembly source files

for bootloading software

/uRobotDigitalController # C source and assembly source files

for main digital system software

Figure 2.1: Git repository directory structure

18

2.3 FPGA Boards

2.3.1 Digilent Nexys 3

The Digilent Nexys 3 [23] is a digital circuit development platform containing the
Xilinx Spartan-6 XC6LX16-CS324 FPGA along with various peripherals. The dig-
ital system of the Single Chip Mote was originally designed and developed on the
Nexys 3 FPGA. This board was chosen because it was the recommended prototyp-
ing board to be used with the ARM Cortex-M0 DesignStart processor package. The
DesignStart package also came with example projects and Verilog code speci�cally
designed for the Nexys 3 board. However, as the size of the digital system grew,
the FPGA on the Nexys 3 could not support the amount of RAM and logic devices
needed, and thus the project was moved to the Nexys 4 DDR board. The Nexys
3 is still used for bootloading purposes (see chapter 5 for more information). This
board and FPGA is compatible with Xilinx's ISE Design Suite and can also be
programmed separately through Digilent's Adept software.

2.3.2 Digilent Nexys 4 DDR

The Digilent Nexys 4 DDR [24] is a digital circuit development platform containing
the Xilinx Artix-7 XC7A100T-1CSG324C FPGA along with various peripherals.
This board is currently used for design, development, and testing of the Single Chip
Mote digital system. This board and FPGA is compatible with Xilinx's ISE Design
Suite and Vivado Design Suite.

2.4 Hardware Development Tools

2.4.1 Xilinx ISE Design Suite 14.6

Overview

Xilinx ISE 14.6 is the integrated development environment used for the hardware
development of the Single Chip Mote on both the Artix-7 and Spartan-6 FPGAs.
This version of ISE can be download directly from Xilinx, and is known to work
on Windows 7 computers. It can also be installed in Windows 8 and 10 with a
few extra steps in the installation procedure. This version can also be installed on
Linux. Xilinx ISE 14.7 should also work for the purposes of this project; however,
this has not been tested or con�rmed.

ISE contains multiple tools required for this project:

Project Navigator The main IDE used to write and synthesize RTL for the
FPGA.

ChipScope Pro A tool used to create and embed a logic analyzer into an FPGA
design for debugging.

CORE Generator A tool used to generate Xilinx IP for FPGA designs such as
memories, FIFOs, and clock generators.

ISim A Verilog simulator.

19

Figure 2.2: Xilinx license manager settings for UC Berkeley license

iMPACT A took used to load con�guration bitstreams onto FPGAs.

Xilinx has chosen to deprecate its ISE Design Suite in favor of its Vivado Design
Suite. However, Vivado supports only 7-series FPGAs, and is not compatible with
the Spartan-6 FPGA. Therefore, this project continues to use ISE.

Installation

First, download ISE 14.6 from Xilinx [22]. Then, install using the default settings.
Once �nished the installer may open the license manager and ask for a license.
Students and researchers at UC Berkeley may use the license provided to the EECS
department for instructional purposes by setting the XILINXD_LICENSE_FILE
and LM_LICENSE_FILE values to 2100@license-srv.eecs.berkeley.edu, as shown
in Figure 2.2. This license supports all versions of Xilinx tools released prior to
October 2015. Xilinx also provides free WEBPACK licenses.

Additional Install Directions for Windows 8/8.1/10

Xilinx has also chosen to stop updating and supporting ISE installations, including
compatibility updates for Windows 8/8.1/10. ISE 14.6 can still be installed on
Windows 8/8.1/10 computers; however, it requires the following modi�cations [13]
in order to work:

1. Open the following directory: C:\Xilinx\14.6\ISE_DS\ISE\lib\nt64

2. Find and rename libPortability.dll to libPortability.dll.orig

20

3. Make a copy of libPortabilityNOSH.dll (copy and paste it to the same
directory) and rename it libPortability.dll

4. Copy libPortabilityNOSH.dll again, but this time navigate to C:\Xilinx\

14.6\ISE_DS\common\lib\nt64 and paste it there

5. In C:\Xilinx\14.7\ISE_DS\common\lib\nt64 Find and rename
libPortability.dll to libPortability.dll.orig

6. Rename libPortabilityNOSH.dll to libPortability.dll

Synthesizing a Design and Loading a Bitstream

The following instructions demonstrate how to synthesize a design in Project Navi-
gator and load the resulting bitstream onto an Artix-7 FPGA (on the Digilent Nexys
4 DDR board) using iMPACT.

Generating a bitstream �le

1. Open Project Navigator and open a project. The project �le used for this
demonstration is
scm-digital/proj/ise/artix7/SingleChipMote/SingleChipMote.xise.

2. Select the top module for this project, in this case uCONTROLLER, in the
Design Hierarchy panel. From there a list of processes that can be run on this
module will appear in the Processes panel (see Figure 2.3).

3. Run the Synthesis, Translate, Map, Place & Route, and Generate Program-
ming File processes in that order. This series of processes generate a bitstream
�le, ucontroller.bit, used to program a compatible FPGA (in this case the
Artix-7 XC7A100T).

Connecting the Nexys 4 board to load a bitstream �le

1. Ensure that the jumper JP1 on the Nexys 4 board is in the JTAG position
and that the power switch is in the ON position.

2. Connect the Nexys 4 board to the computer using the micro-USB port on the
board labeled PROG UART. This USB port is used for both programming
and UART communication.

3. Once the board has been recognized by the computer and the proper drivers
have been installed, open iMPACT by running the Con�gure Target Device
process (see Figure 2.3).

There may be a warning saying that no iMPACT project �le exists, or that a
target device has not been designated. The next few steps create a new project and
then con�gure iMPACT to write to the target FPGA.

Using iMPACT to load a bitstream �le

1. Go to the File menu and select New Project. Select Yes when asked to have a
project �le automatically created.

21

2. A new window will open with various options on how to program the FPGA
(see Figure 2.4). Choose Con�gure devices using Boundary-Scan (JTAG), and
underneath that choose Enter a Boundary-Scan chain manually. The manual
approach is better in the case where there is more than one FPGA board
connected to the computer at once; it provides the user with the option to
connect to a speci�c board instead of allowing iMPACT choose the �rst one
it sees.

3. Select the Cable Setup... option in the Output menu to open the Cable Com-
munication Setup window. From here select Digilent USB JTAG Cable in
the Communication Mode section (this is necessary for both Nexys boards).
Then go to the drop-down menu under Port to see all devices connected to the
computer (see Figure 2.5). Choose the appropriate board, based on the serial
number written on the board and shown in the drop-down menu, and select
Ok.

4. Inside the main window in iMPACT, right click and select Add Xilinx Device...
(see Figure 2.6). From here choose the bitstream �le to be loaded onto the
FPGA (in this case ucontroller.bit). The device will now appear in the main
window in iMPACT (see Figure 2.7).

5. Select the device by clicking on the image of the Xilinx chip (the chip will
change colors from grey to green). Then double-click Program process from
the iMPACT Processes list on the left side of the main window to load the
bitstream onto the board.

Once this process has completed, the main window will display Program Succeeded
(see Figure 2.8). The FPGA has now been con�gured to run the hardware synthe-
sized in Project Navigator.

For more information on how to create a project in ISE for the Artix-7, see
section 3.1 on ISE project settings.

2.4.2 Digilent Adept

Digilent Adept is a utility provided by Digilent that can be used to load bitstream
�les onto some of their FPGA boards. The version of Digilent Adepet used for this
project is 2.15.3; however, the latest version [12], 2.16.1, is also compatible. Adept
is used to program the Nexys 3 board but does not support the Nexys 4 DDR. The
Nexys 3 also has additional memory external to the FPGA, written through Adept
and accessed on the FPGA. This memory is used for bootloading (see chapter 5
for more information on bootloading), and must be written before the bitstream is
loaded.

Using Adept to load a bitstream �le (Nexys 3 only)

1. Ensure that the power switch on the Nexys 3 board is in the ON position.

2. Connect the Nexys 3 board to the computer using the micro-USB port on the
board labled USB PROG. There is a separate micro-USB port on the board
for UART communication which cannot be used for loading a bitstream.

22

Figure 2.3: ISE Project Navigator for the SingleChipMote project

Figure 2.4: Con�guring a new iMPACT Project

23

Figure 2.5: Selecting the device to program in iMPACT

Figure 2.6: Adding a Xilinx device in iMPACT

24

Figure 2.7: Main iMPACT window with a selected device to program

Figure 2.8: Main iMPACT window after successfully programming a device

25

3. Once the board has been recognized by the computer and the proper drivers
has been installed, launch Adept.

4. On the upper-right of the window, there is a drop-down menu listing all of the
Digilent devices connected to the computer. Select the Nexys3.

5. Go to the Con�g tab, select the Browse... button, and select the bitstream �le
generated for a Spartan-6 FPGA (for an example project on the Spartan-6, go
to scm-digital/proj/ise/spartan6/uRobotDigitalController/ucontroller.
bit).

6. Press the Program button to program the FPGA (see Figure 2.9).

Using Adept to load a �le into external RAM

NOTE: The memory must be written before the bitstream is loaded.

1. Ensure that the power switch on the Nexys 3 board is in the ON position.

2. Connect the Nexys 3 board to the computer using the micro-USB port on the
board labled USB PROG. There is a separate micro-USB port on the board
for UART communication which cannot be used for loading a bitstream.

3. Once the board has been recognized by the computer and the proper drivers
has been installed, launch Adept.

4. On the upper-right of the window, there is a drop-down menu listing all of the
Digilent devices connected to the computer. Select the Nexys3.

5. Go to the Memory tab. There are options to program SPI Flash, BPI Flash,
and RAM. The Nexys 3 designs used for the Single Chip Mote use the RAM.

6. Select the RAM option on the right side of the Memory tab. Then select the
Browse... button in the Write File to Memory section and select the �le to be
written. Check the Verify check box.

7. Select the Write button (see Figure 2.10).

For more information on how Digilent Adept is used for bootloading onto the
Single Chip Mote, see section 5.7 on connecting and loading software.

2.4.3 Xilinx Vivado Design Suite

As mentioned previously, the Vivado Design Suite can be used for designs on the
Artix-7 FPGA. Xilinx and Digilent are providing increasing support for Vivado and
decreasing support for ISE. However, importing the Single Chip Mote project from
ISE to Vivado has not been tested, nor has it been con�rmed that the UC Berkeley
Xilinx license will work on earlier versions of Vivado (it will not work on anything
released after October 2015). Xilinx does o�er a free WEBPACK license which also
has not been used or tested for the Single Chip Mote project.

26

Figure 2.9: Adept settings for programming a bitstream

Figure 2.10: Adept settings for writing memory on the Nexys 3 board

27

2.5 Software Development Tools

2.5.1 Keil uVision5

Keil uVision5 is an IDE used for developing software running on ARM microproces-
sors. This IDE is part of the ARM MDK 5 Microcontroller Development Kit [19].
The version of the MDK used for this project is 5.11; however, the latest version,
5.18, is also compatible.

To compile code for the ARM Cortex M0 on the Single Chip Mote, open an
existing project in Keil uVision5. The project �le used for this demonstration is
scm-digital/proj/keil/uRobotDigitalController/code.uvprojx. Then go to
the Project menu and select Build Target. This compiles the code, creates a C binary
image called code.bin, and also creates a text �le called disasm.txt, containing a
disassembled version of the code. The C binary image is loaded into the instruction
memory of the Single Chip Mote on an FPGA using the bootloader (see chapter 5
for more information on bootloading).

For more information on how to make a Keil uVision5 project for the Single Chip
Mote, see section 4.1 on Keil project settings.

2.5.2 Bin2coe

Bin2coe [4] is a small Windows executable used to convert C binary image �les (bin)
to COE �les used by Xilinx to initialize FPGA memories. COE �les are used to
initialize the instruction ROM with software written and compiled in Keil. This is
used for the bootloading ROM on the Single Chip Mote. This program limits the
data widths of the COE �le to 32 bits, and therefore the generated COE �les are
limited to memories with a width of 32 bits.

28

Chapter 3

Single Chip Mote Hardware

This chapter provides a detailed overview of all the hardware components of the
Single Chip Mote digital system. The Single Chip Mote hardware encompasses
all of the Verilog �les, Verilog header �les, and ISE project �les used to describe
the Single Chip Mote digital system. The intention of this chapter is to provide
clari�cation and guidance to those planning on reading or modifying the hardware,
and its is highly recommended that this chapter be read alongside the Verilog code
described in each section. This chapter may also provide some useful insight for
software developers designing applications for the Single Chip Mote, in particular
the sections on register interfaces.

Some of the �les and designs described in this chapter are provided by ARM
with the Cortex-M0 DesignStart kit (see section 2.2 for more information), such as
the Verilog for the Cortex-M0 and AHB controllers for various peripherals on the
Nexys 3 board. There are also Verilog modules designed by Francesco Bigazzi, a
visiting scholar who originally worked on the Single Chip Mote digital system, such
as the bridge between AHB and APB, and some of the APB peripherals. All other
work described in this section not attributed to ARM, Bigazzi, or any other designer
is original.

3.1 ISE Project Settings

ISE projects have already been created for the Single Chip Mote digital system on
the Artix-7 and Spartan-6, as well as the bootload hardware (chapter 5) for the
Spartan-6. However, it may be necessary in the future to make more ISE projects
for additional FPGA designs, such as running the bootload hardware (chapter 5) on
the Artix-7. This section contains the information needed to create a new project
for the versions of these chips running on the Nexys 4 DDR and Nexys 3 boards.

3.1.1 Artix-7

In order to create a new ISE project for the Artix-7 FPGA on the Nexys 4 DDR
board, open ISE and choose New Project in the File menu. In the New Project
Wizard window, enter a name for the project and specify the location of the project
�les. It is suggested that all project �les related to Single Chip Mote be checked
into the repo in scm-digital/proj/ise/artix7/. After selecting Next, the New
Project Wizard will display the options for the device and design �ow for the project.

29

Figure 3.1: Project settings used to create a new ISE project for the Artix-7 FPGA
on the Nexys 4 DDR

Figure 3.1 shows all of the appropriate options for the Artix-7 on the Nexys 4 DDR.
Select Next and then Finish to create the new project.

From here, add any pre-written Verilog �les using the Add Source... option in
the Project menu. Use the New Source... option in the Project menu to create new
source �les including Verilog �les. All of the project source �les will appear in the
Design Hierarchy panel. Once the top Verilog module is added or created, select
that module in the Design Hierarchy panel and go to the Source menu and select Set
as Top Module. Now when this module is selected in the Design Hierarchy Panel,
all of the synthesis and other compilation options will appear in the Processes panel.

3.1.2 Spartan-6

In order to create a new ISE project for the Spartan-6 FPGA on the Nexys 3 board,
open ISE and choose New Project in the File menu. In the New Project Wizard
window, enter a name for the project and specify the location of the project �les.
It is suggested that all project �les related to Single Chip Mote be checked into the
repo in scm-digital/proj/ise/spartan6/. After selecting Next, the New Project
Wizard will display the options for the device and design �ow for the project. Figure
3.2 shows all of the appropriate options for the Spartan-6 on the Nexys 3. Select
Next and then Finish to create the new project.

From here, add any pre-written Verilog �les using the Add Source... option in
the Project menu. Use the New Source... option in the Project menu to create new
source �les including Verilog �les. All of the project source �les will appear in the
Design Hierarchy panel. Once the top Verilog module is added or created, select
that module in the Design Hierarchy panel and go to the Source menu and select
Set as Top Module. When this module is selected in the Design Hierarchy Panel

30

Figure 3.2: Project settings used to create a new ISE project for the Spartan-6
FPGA on the Nexys 3

again, all of the synthesis and other compilation options will appear in the Processes
panel.

3.1.3 User Constraints File

All ISE projects require a User Constrains File (UCF) in order to map the top
module's IOs to the pins on the FPGA package. Given that the FPGAs are soldered
onto boards designed by Digilent, not all of the available pins on the package are
routed to pins accessible on the Digilent boards. While generic UCF �les for the
Spartan-6 and Artix-7 FPGAs exist (or are generated using Xilinx tools), Digilent
provides master UCF �les for their Nexys 3 and Nexys 4 DDR boards listing only
the pins that are accessible through one of the various connectors on the boards.
These UCF �les provide net names and descriptions in the comments of each line
to describe how each of the actual FPGA pins map to a physical connector on the
board. Digilent also publishes the schematics of their boards, containing the same
information as the UCF �le comments in a visual form. It is recommended that a
clean UCF �le is downloaded from Digilent's resource center for every project, and
added in ISE using the Add Source... option in the Project menu.

Figure 3.3 contains an excerpt of the UCF �le used for the Single Chip Mote
digital system on the Nexys 4 DDR. The �le is a modi�ed version of the UCF �le
provided by Digilent for any Nexys 4 DDR design. All of the lines beginning with
a hash symbol (#) are comments. A UCF �le must only include pins on the FPGA
that are currently in use. All unused pins must be either omitted from the �le, or
as seen in the example, commented-out.

The top line in Figure 3.3 contains the de�nition of the CLK net used for the
100MHz input clock. Underneath is a series of lines designating this net as a clock,

31

and specifying its properties such as frequency and duty cycle.
Each input or output is described using a line beginning with NET. This is then

followed by the net name, in quotes. The net name corresponds to the name of the
input or output in the top module. Input and output buses require that each signal
in the bus have its own NET in the UCF �le, with the index indicated using angle
brackets (<>) instead of square brackets ([]).

The location of the pin connected to the net is speci�ed after the net name, using
LOC=J15, where J15 is a particular pin on the FPGA. In the case of the Nexys 4
DDR, the pin J15 is connected to one of the switches, hence why this net is included
in the Switches section of the provided UCF. The original name of this net was
sw<0> to indicate that it was connected to the �rst switch on the board. This is
why it is recommended that the UCF �les provided by Digilent are used. However,
net names must be changed to match the top module (or vice versa) when using the
UCF �le provided by Digilent.

The IOSTANDARD=LVCMOSS33 is an optional attribute, used to specify the at-
tributes for the pin such as voltage, drive, and slew. It is recommended that the
default IOSTANDARD speci�ed in the Digilent UCF �le is used and not changed
unless the proper Xilinx documentation is �rst consulted.

The comments after each line indicate the name of the pin on the Artix-7 pack-
age. The name also contains information on how the pin may be used. For example,
all pins with MRCC or SRCC in the name can be used as an input for clock signals.
However, if the clock is single-ended, then the pin must also have a P in the sec-
ond part of the name, for example IO_L13P_T2_MRCC_15. Di�erential clock inputs
require P/N pairs. The IO_L13P_T2_MRCC_15 pin is the only pin of its kind that
is accessible through one of the Pmod connectors on the Nexys 4 DDR board, and
therefore this single pin is used for both the input clock for the radio (see section
3.25 for more information) and the input clock for the 3 Wire Bus (see section 5.4
for more details).

3.2 Digital System Architecture Overview

Figure 3.4 contains a block diagram of the top module of the Single Chip Mote digital
system, uCONTROLLER, along withs its inputs and outputs to/from the other parts of
the Single Chip Mote, such as the analog/RF circuits. The Single Chip Mote digital
system consists of one ARM Cortex-M0 DesignStart processor connected to various
peripherals through a hierarchy of buses. These peripherals include instruction
and data memory, a radio controller, a radio timer, an ADC controller, a UART
transmitter and receiver, analog con�guration registers for the radio, and general-
purpose digital inputs and outputs.

The PON (short for Power-ON) module contains all of the hardware to generate
the clocks and handle resets. This module is only required for the FPGA version of
the Single Chip Mote digital system. On an ASIC, it is assumed that an external
analog circuit handles the generation of all clock and reset signals.

The AHB-Lite is a 32-bit bus used by the ARM Cortex-M0 to connect to memory
and peripherals. The main AHB-Lite bus is composed of two modules, AHBDCD
and AHBMUX. An example of these modules is provided in the ARM Cortex-M0
DesignStart kit and is used as the basis for this design. This bus has 1 master,
the ARM Cortex-M0 and 5 slaves: the instruction memory (AHBIMEM), another

32

NET "CLK" LOC = "E3" |IOSTANDARD = "LVCMOS33 "; #Bank = 35, Pin name = #

IO_L12P_T1_MRCC_35 , Sch name = clk100mhz

NET "CLK" TNM_NET = sys_clk_pin;

TIMESPEC TS_sys_clk_pin = PERIOD sys_clk_pin 100 MHz HIGH 50%;

Switches

NET "gp_in <0>" LOC=J15 |IOSTANDARD=LVCMOS33; #IO_L24N_T3_RS0_15

NET "gp_in <1>" LOC=L16 |IOSTANDARD=LVCMOS33; #IO_L3N_T0_DQS_EMCCLK_14

NET "gp_in <2>" LOC=M13 |IOSTANDARD=LVCMOS33; #IO_L6N_T0_D08_VREF_14

NET "gp_in <3>" LOC=R15 |IOSTANDARD=LVCMOS33; #IO_L13N_T2_MRCC_14

#NET "sw <4>" LOC=R17 |IOSTANDARD=LVCMOS33; #IO_L12N_T1_MRCC_14

#NET "sw <5>" LOC=T18 |IOSTANDARD=LVCMOS33; #IO_L7N_T1_D10_14

#NET "sw <6>" LOC=U18 |IOSTANDARD=LVCMOS33; #IO_L17N_T2_A13_D29_14

#NET "sw <7>" LOC=R13 |IOSTANDARD=LVCMOS33; #IO_L5N_T0_D07_14

...

Buttons

NET "RESETn" LOC=C12 |IOSTANDARD=LVCMOS33; #IO_L3P_T0_DQS_AD1P_15

#NET "btnc" LOC=N17 | IOSTANDARD=LVCMOS33; #IO_L9P_T1_DQS_14

#NET "btnd" LOC=P18 | IOSTANDARD=LVCMOS33; #IO_L9N_T1_DQS_D13_14

#NET "btnl" LOC=P17 | IOSTANDARD=LVCMOS33; #IO_L12P_T1_MRCC_14

#NET "btnr" LOC=M17 | IOSTANDARD=LVCMOS33; #IO_L10N_T1_D15_14

#NET "btnu" LOC=M18 | IOSTANDARD=LVCMOS33; #IO_L4N_T0_D05_14

...

Pmod Header JB

NET "data_3wb" LOC=D14 |IOSTANDARD=LVCMOS33; #IO_L1P_T0_AD0P_15

NET "latch_3wb" LOC=F16 |IOSTANDARD=LVCMOS33; #IO_L14N_T2_SRCC_15

#NET "jb <3>" LOC=G16 |IOSTANDARD=LVCMOS33; #IO_L13N_T2_MRCC_15

#NET "jb <4>" LOC=H14 |IOSTANDARD=LVCMOS33; #IO_L15P_T2_DQS_15

NET "tx_clk" LOC=E16 |IOSTANDARD=LVCMOS33; #IO_L11N_T1_SRCC_15

NET "tx_dout" LOC=F13 |IOSTANDARD=LVCMOS33; #IO_L5P_T0_AD9P_15

NET "rx_din" LOC=G13 |IOSTANDARD=LVCMOS33; #IO_0_15

NET "rx_clk" LOC=H16 |IOSTANDARD=LVCMOS33; #IO_L13P_T2_MRCC_15

Figure 3.3: An example of a UCF �le for the Artix-7 on the Nexys 4 DDR board

AHB-Lite bus (through the arbiter AHBLiteArbiter_V2), the direct memory access
controller (DMA_V2), the radio timer (RFTIMER), and an APB bus. The second AHB-
Lite bus is designed to have two masters (using the AHBLiteArbiter_V2 module
as an arbiter) and two slaves, the data memory (AHBDMEM) and the radio controller
(RFcontroller). This structure was chosen because the two slaves need to be
accessed by both the Cortex-M0 and the DMA. The DMA is used to automatically
transfer radio packet data between the radio controller and the data memory without
any intervention from the Cortex-M0. The �rst AHB-Lite bus is referred to as the
AHB. The second AHB-Lite bus is referred to as the AHBsub.

The APB is a 16-bit peripheral bus used to access peripherals that do not require
the full 32-bit data size or the low latency of the AHB-Lite. The APB is connected
to the AHB-Lite using the AHB2APB module designed by Bigazzi. The bus itself is
composed of the APBMUX module designed by Bigazzi. This bus has four slaves: the
ADC controller (APBADC_V2), the UART transmitter/receiver (APBUART), con�gu-
ration registers for the analog circuits of the Single Chip Mote (APB_ANALOG_CFG),
and a small set of digital inputs and outputs (APBGPIO).

For more information on the AHB-Lite protocol, the APB protocol, and each of
the modules mentioned above, see the rest of this chapter.

3.3 ARM Cortex-M0 Memory Map Speci�cation

The AHB-Lite bus on the ARM Cortex-M0 allows for the use of 4GB addressable
memory with 32-bit addresses. In ARM documentation this addressable memory

33

AHBIMEM RFTIMERDMA_V2 AHB2APB

ARM Cortex-M0

AHBLite

AHBDMEM RFCONTROLLER

AHBLite

AHBLiteArbiter_V2

APBADC_v2

APBUART

APB_ANALOG_CFG

APBGPIO

A
P
B

PON

uCONTROLLER

adc_din[9:0]adc_doneadc_resetadc_clkadc_loadadc_cdigadc_cvinadc_cvref

RsTxRsRx

gp_in[3:0]*gp_out[3:0]*

analog_cfg[15:0]*

LOCKUPSLEEPING

data_3wblatch_3wb

tx_dout rx_din

CLKRESETntx_clkrx_clk/clk_3wb

Figure 3.4: Block diagram of the Single Chip Mote digital system. Inputs/outputs
with a * have parameterizable bus widths.

34

Address Range Address Pre�x Memory Region Description

0x00000000- 0x00-0x1F Code Executable region for instruction memory.

0x1FFFFFFF This can be ROM, RAM, or both.

Data can also go here.

0x20000000- 0x20-0x3F SRAM Executable region for data memory.

0x3FFFFFFF Instructions can also go here.

0x40000000- 0x40-0x5F Peripheral External device memory. This memory

0x5FFFFFFF is not executable.

0x60000000- 0x60-0x9F External RAM Executable region for external data

0x9FFFFFFF memory.

0xA0000000- 0xA0-0xDF External Device Non-executable region for external device

0xDFFFFFFF memory.

0xE0000000- 0xE00 Private Peripheral Non-executable region including special

0xE00FFFFF Bus Cortex-M0 registers such as the NVIC,

system timer, and system control block.

0xE0100000- 0xE01-0xFFF Device Implementation-speci�c device memory.

0xFFFFFFFF This region is reserved for additional ARM

Cortex-M0 features not available on the

DesignStart processor.

Figure 3.5: Memory map of the ARM Cortex-M0

is referred to as the memory map. This does not mean that all Cortex-M0 designs
contain at least 4GB of memory storage; instead, all Cortex-M0 designs have 4GB of
address space used to access either actual memory or memory-mapped peripherals.

Each address refers to a single byte in the memory; however, in certain regions
of the memory map, the ARM Cortex-M0 DesignStart processor only allows word-
aligned accesses. Overall, it is recommended that all memory-mapped peripherals
used word-aligned addresses. In this case, the only valid addresses are multiples of
4, such as 0x0101010C or 0xABCDEF08.

Continuous regions of this address space are reserved for instruction memory,
data memory, debug access, and peripherals. Addresses are divided into these re-
gions based on the upper bits of the address. In the Single Chip Mote digital
system, the 8 upper bits (referred to in this document as the address pre�x) are
used to distinguish between memory regions or memory-mapped peripherals. One
notable exception is the Private Peripheral Bus, with a 12-bit pre�x of 0xE00.

Figure 3.5 contains a summary of the memory map for the ARM Cortex-M0.
Not all regions of this memory map are currently used in the Single Chip Mote
digital system, such as the external data memory or the external device memory.

For more information on the ARM Cortex-M0 memory map see the Cortex-M0
Devices Generic User Guide [10]. A copy is also found in scm-digital/doc/.

3.4 AMBA 3 AHB-Lite Protocol

This section summarizes the basics of the AMBA 3 AHB-Lite protocol, including
speci�c details involving the implementation of this bus on the Single Chip Mote
digital system.

The AHB-Lite bus is a high-bandwidth single-master bus. All slaves on this bus
use the same clock, HCLK, and have the same reset, HRESETn. On the Single Chip

35

Mote digital system, almost all modules use HCLK and HRESETn as well, including
APB slaves.

The bus master drives the following signals:

HADDR[31:0] The address bus.

HBURST[2:0] Indicates whether the transfer is a single transfer or some kind of
burst. The DesignStart processor does not generate any BURST transfers
[29]. Therefore, this signal is omitted in the Single Chip Mote digital system.

HMASTLOCK Indicates that the current transfer is part of a locked sequence. The
DesignStart processor does not generate any locked transfers [29]. Therefore,
this signal is omitted in the Single Chip Mote digital system.

HPROT[3:0] Protection control signal. This can be ignored by the slave [29], and is
omitted in the Single Chip Mote digital system.

HSIZE[2:0] Indicates the size of the transfer as a byte, halfword, or word.

HTRANS[1:0] Indicates the transfer type. The DesignStart processor only uses non-
sequential transfers [29], making HTRANS[0] always 0. Therefore, HTRANS[0]
is omitted in the Single Chip Mote digital system.

HWDATA[31:0] The write data when the master writes to a slave.

HWRITE Indicates if the transfer is a read (0) or write (1).

Slaves each drive their own set of the following signals:

HRDATA[31:0] The read data given to the master when it reads from a slave.

HREADYOUT Indicates that the transfer is �nished. As long as this signal is 0, the
master waits until it is 1 before considering the transfer complete.

HRESP Used to indicate an error in the transfer. This is not used by any of the slaves
in the Single Chip Mote digital system and is omitted.

The AHBDCD module takes the address for the current transfer and selects the
correct slave using the address pre�x. This module is connected to the AHBMUX

module, which selects the correct set of slave signals to send to the master. The
AHBDCD module also drives the various HSEL signals to each slave, used to indicate
that the transfer is intended for that particular slave.

Each bus transfer requires two phases, the address phase and the data phase. In
the address phase, the master sets the HADDR, HWRITE, HTRANS, and other relevant
signals. The next cycle is the beginning of the data phase, where the slave sets
HRDATA (if the transfer is a read), performs a write (if the transfer is a write) and
sets HREADYOUT if the transfer is complete. The slave can stall the master by leaving
HREADYOUT low.

This protocol supports pipelined transfers. This means that the data phase of
one transfer can also be the address phase of the next transfer. The address phase
signals remain constant/valid while the master is stalled during a data phase, and
do not change until HREADYOUT from the slave is high.

For more information on the AHB-Lite, see the AMBA 3 AHB-Lite Protocol
Speci�cation [1]. A copy is also found in scm-digital/doc/.

36

3.5 AMBA 3 APB Protocol

This section summarizes the basics of the AMBA 3 APB protocol, including speci�c
details involving the implementation of this bus on the Single Chip Mote digital
system.

The APB bus is a low-power reduced-complexity bus for peripherals that do not
require high bandwidth or low latency. The protocol de�nes separate clock (PCLK)
and reset (PRESETn) signals for APB slaves. In the Single Chip Mote digital system,
HCLK and HRESETn are used instead.

The master of this bus is the composed of the bridge connecting the AHB and
APB (the AHB2APB module) and the APBMUX module that indicates which slave is
being accessed and sends the correct set of slave signals to the master. The master
drives the following signals:

PADDR[15:0] The address bus.

PSEL Each slave has one of these signals to indicate that the transfer is intended for
that particular slave.

PENABLE Indicates the second and subsequent cycles of a transfer.

PWRITE Indicates if the transfer is a read (0) or write (1).

PWDATA[15:0] The write data when the master writes to a slave.

The slaves each drive their own set of the following signals:

PREADY Indicates that the transfer is �nished. As long as this signal is 0, the master
waits until it is 1 before considering the transfer complete.

PRDATA[15:0] The read data given to the master when it reads from a slave.

PSLVERR Indicates a transfer failure. This is optional and is not used by any of the
slaves in the Single Chip Mote digital system and is omitted.

Each bus transfer requires two phases, the setup phase and the access phase.
The �rst clock cycle is the setup phase, where PADDR, PWDATA, and PWRITE are set
by the master. During the second clock cycle, the PENABLE signal is asserted to
indicate that it is now the access phase. All control signals stay the same during
the access phase as the APB protocol does not allow for pipelined transfers. The
access phase is extended by keeping the PREADY signal low. The transfer completes
once PREADY is high.

For more information on the APB, see the AMBA 3 APB Protocol Speci�cation
[2]. A copy is also found in scm-digital/doc/.

3.6 Header Files and Parameters

The Verilog for the Single Chip Mote digital system contains two header �les, SYS_
PROP.vh and REGISTERS.vh, used parameterize the design and make it easy to
modify.

37

3.6.1 SYS_PROP.vh

SYS_PROP.vh contains �define statements used to tweak module parameters (such
as the baud rate for APBUART or the number of outputs in APBGPIO). Each param-
eterizable module has a parameter de�ned in the module de�nition. If a module is
not instantiated in the top level, then its parent module de�nes the same parame-
ter, and passes the value on during instantiation. If there are several submodules
between the top level and the module requiring the parameter, then each module in
that chain must instantiate the parameter and pass it down. At the top level, the
name de�ned in SYS_PROP.vh is passed into the module instantiation.

For example, consider the compare_unit module, with the following de�nition:

module compare_unit(

...

...

...

);

// Parameters

parameter COUNTER_WIDTH = 32;

This module is instantiated in the RFTIMER module using the following syntax:

compare_unit #(. COUNTER_WIDTH(COUNTER_WIDTH)) u_compare_unit (

...

...

...

);

The RFTIMER module also contains the same parameter, COUNTER_WIDTH, along
with its own parameters:

module RFTIMER(

...

...

...

);

// Parameters

parameter NUM_COMPARE_UNITS = 8;

parameter NUM_CAPTURE_UNITS = 4;

parameter COUNTER_WIDTH = 32;

And RFTIMER is instantiated at the top level, uCONTROLLER, using the values
de�ned in SYS_PROP.vh:

RFTIMER #(

.NUM_COMPARE_UNITS(`RFTIMER_NUM_COMPARE_UNITS),

.NUM_CAPTURE_UNITS(`RFTIMER_NUM_CAPTURE_UNITS),

.COUNTER_WIDTH(`RFTIMER_COUNTER_WIDTH)

) u_RFTIMER (

...

...

...

);

// RFTIMER Specifications

`define RFTIMER_NUM_COMPARE_UNITS 8 // the number of compare units for the

timer , if this changes REGISTERS.vh must be updated

`define RFTIMER_NUM_CAPTURE_UNITS 4 // the number of capture units for the

timer , if this changes REFISTERS.vh must be updated

`define RFTIMER_COUNTER_WIDTH 32 // the width of the counter for the timer ,

maximum is 32

Not all parameters need to be exposed all the way to the top level. For example,
state encodings are typically enumerated using parameters. However, these states

38

are speci�c only to the module itself and are not system-level parameters. Therefore,
it is recommended that they are de�ned as localparams instead of parameters.

3.6.2 REGISTERS.vh

REGISTERS.vh contains �define statements used to assign addresses to peripherals
on the AHB and APB and each of their registers. This is �rst done by assigning
an 8-bit address pre�x to each peripheral. Then these pre�xes are used to de�ne a
base address for each peripheral. Then this base address is used to de�ne all register
addresses for that peripheral.

As stated in section 3.3, all addresses with a pre�x in the range of 0x40-0x5F can
be used for peripheral devices. In the Single Chip Mote digital system, all addresses
with a pre�x in the range of 0x40-0x4F are reserved for AHB peripherals, and all
addresses with a pre�x in the range of 0x50-0x5F are reserved for APB peripherals.
The only exceptions are the instruction instruction memory (with a pre�x of 0x00),
the bootloader (0x01), and the data memory (0x20), as these are not really system
peripherals but are memories used by the ARM Cortex-M0. The �rst section of
REGISTERS.vh de�nes these pre�xes:

// AHB Address Prefixes

`define AHB_PREFIX__IMEM 8'h00

`define AHB_PREFIX__BOOTLOADER 8'h01

`define AHB_PREFIX__DMEM 8'h20

`define AHB_PREFIX__RFCONTROLLER 8'h40

`define AHB_PREFIX__DMA 8'h41

`define AHB_PREFIX__RFTIMER 8'h42

`define AHB_PREFIX__APB 8'b0101_xxxx

// APB Address Prefixes

`define APB_PREFIX__ADC 8'h50

`define APB_PREFIX__UART 8'h51

`define APB_PREFIX__ANALOG_CFG 8'h52

`define APB_PREFIX__GPIO 8'h53

These pre�xes are also used in the AHBDCD and APBMUX modules to determine the
AHB/APB signals for each slave based on address.

The next section of REGISTERS.vh uses these pre�xes to de�ne a base address
for each peripheral:

// AHB Peripheral Base Addresses

`define AHB_BASE__IMEM { `AHB_PREFIX__IMEM , 24'h00_0000 }

`define AHB_BASE__BOOTLOADER { `AHB_PREFIX__BOOTLOADER , 24'h00_0000 }

`define AHB_BASE__DMEM { `AHB_PREFIX__DMEM , 24'h00_0000 }

`define AHB_BASE__RFCONTROLLER { `AHB_PREFIX__RFCONTROLLER , 24'h00_0000 }

`define AHB_BASE__DMA { `AHB_PREFIX__DMA , 24'h00_0000 }

`define AHB_BASE__RFTIMER { `AHB_PREFIX__RFTIMER , 24'h00_0000 }

`define AHB_BASE__APB { `AHB_PREFIX__APB , 24'h00_0000 }

// APB Peripheral Base Addresses

`define APB_BASE__ADC { `APB_PREFIX__ADC , 8'h00 }

`define APB_BASE__UART { `APB_PREFIX__UART , 8'h00 }

`define APB_BASE__ANALOG_CG { `APB_PREFIX__ANALOG_CFG , 8'h00 }

`define APB_BASE__GPIO { `APB_PREFIX__GPIO , 8'h00 }

This base address is the �rst address in the region of addresses allocated to the
peripheral. For example, the RFcontroller module has a pre�x of 0x40 and thus a
base address of 0x40000000. All register addresses are described relative to an o�set
from the base. Any changes in the pre�x automatically change the base address and
all register addresses for that peripheral. Note that the APB uses 16-bit addresses
instead of 32-bit addresses.

39

The last section of REGISTERS.vh uses the base addresses to de�ne all of the
register addresses for the AHB/APB peripherals:

// RF Controller

`define RFCONTROLLER_REG__CONTROL `AHB_BASE__RFCONTROLLER + 32' h0000_0000

`define RFCONTROLLER_REG__STATUS `AHB_BASE__RFCONTROLLER + 32' h0000_0004

`define RFCONTROLLER_REG__TX_DATA_ADDR `AHB_BASE__RFCONTROLLER + 32' h0000_0008

`define RFCONTROLLER_REG__TX_PACK_LEN `AHB_BASE__RFCONTROLLER + 32' h0000_000C

...

// GPIO

`define APBGPIO_REG__INPUT `APB_BASE__GPIO + 16'h0000

`define APBGPIO_REG__OUTPUT `APB_BASE__GPIO + 16'h0004

These address de�nitions are used in any Verilog code that refers to speci�c
register addresses or pre�xes. Using de�ne statements for each address ensures that
they are easily accessible in one �le and all changes propagate to any modules relying
on these addresses or pre�xes.

The REGISTERS.vh �le could also be parsed by a script to generate a C header �le
for the purposes of software development. Another option is to de�ne all pre�xes and
registers in a CSV �le, and use a script to create both REGISTERS.vh and a C header
�le. Neither of these options are currently implemented, though it is recommended
that such a script is created for future work on the Single Chip Mote digital system.

3.7 Module Hierarchy

Figure 3.6 contains a list of all of the Single Chip Mote digital system modules
and their submodules. This list matches the Design Hierarchy panel in ISE Project
Navigator.

3.8 uCONTROLLER

3.8.1 Description

uCONTRLLER (found in TOP_SYS.v) is the top module of the Single Chip Mote digital
system. This module instantiates the Cortex-M0, power-on moudle, the AHB/APB
peripherals, and the AHB/APB busses. This module also connects the above men-
tioned modules together and to the main inputs and outputs of the Single Chip
Mote digital system.

3.8.2 Input/Output Ports

CLK 100MHz clock input from the FPGA board.

RESETn Reset input from a button on the FPGA board.

LOCKUP Output to an LED on the FPGA board, connected to the LOCKUP output
from CORTEXM0DS.

SLEEPING Output to an LED on the FPGA board, connected to the SLEEPING
output from CORTEXM0DS.

RsRx Receive data input for UART.

40

uCONTROLLER

PON

pb_debounceRESET

ClockDiv

CORTEXM0DS

cortexm0ds_logic

DMA_V2

AHBDCD

AHBMUX

AHBIMEM

instruction_ROM

instruction_RAM

RFTIMER

compare_unit

capture_unit

AHBLiteArbiter_V2

AHBDCDsub

AHBMUXsub

AHBDMEM

dmem_ram

RFCONTROLLER

tx_fifo2

tx_fifo_mem

tx_rdptr_empty

tx_wrptr_full

tx_async_comp

spreader

symbol2chips

bit_sync

corr_despreader

correlator

bus_sync

rx_fifo

rx_fifo_mem

rx_rdptr_empty

rx_wrptr_full

rx_async_comp

crcParallel

AHB2APB

APBMUX

APBADC_V2

APBUART

BAUDGEN

FIFO

UART_RX

UART_TX

APB_ANALOG_CFG

APBGPIO

Figure 3.6: Module Hierarchy for the Single Chip Mote digital system

41

RsTx Transmit data output for UART.

adc_din[9:0] Data input from the ADC.

adc_done Done input from the ADC.

adc_reset Reset output to the ADC.

adc_clk Clock output to the ADC.

adc_load Load output to the ADC.

adc_cdig Cdig output to the ADC.

adc_cvin Cvin output to the ADC.

adc_cvref Cvref output to the ADC.

analog_cfg[(�ANALOGCFG_NUM_REG*16)-1:0] Analog con�guration outputs to the
rest of the Single Chip Mote system. The size of this port depends on the num-
ber of 16-bit analog con�guration registers in the APB_ANALOG_CFG module.

gp_in[�GPIO_NUM_INPUTS-1:0] General-purpose digital inputs. The size of this
port depends on the number of general-purpose digital inputs in the APBGPIO
module.

gp_in[�GPIO_NUM_OUTPUTS-1:0] General-purpose digital outputs. The size of this
port depends on the number of general-purpose digital outputs in the APBGPIO
module.

rx_clk Input clock aligned with the data received from the radio circuit.

rx_din Data input for data received from the radio circuit. On the FPGAs this
input is also used as the clock input for the 3 Wire Bus used for bootloading
(chapter 5).

tx_clk Output clock aligned with the data sent to the radio circuit.

tx_dout Data output for data sent to the radio circuit.

data_3wb Data input for the 3 Wire Bus used for bootloading (chapter 5).

latch_3wb Latch input for the 3 Wire Bus used for bootloading (chapter 5).

3.8.3 Design Details

uCONTROLLER is the top-level module, used to connect all other modules to one
another and to the inputs and outputs of the design as a whole. It contains the
instantiations of all the other modules (see Figure 3.6 for its submodules), and
declarations for the wires connecting these modules. Any new buses or peripherals
must be instantiated in this module.

42

3.9 CORTEXM0DS

3.9.1 Description

This module, provided by ARM in the DesignStart kit, is an interface between
the obfuscated Verilog describing the ARM Cortex-M0 DesignStart processor (in
cortexm0ds_logic) and the rest of the system.

3.9.2 Input/Output Ports

HCLK Clock input.

HRESETn Asynchronous reset input.

HADDR[31:0] AHB transfer address output.

HBURST[2:0] AHB burst output. This is always 0 and is omitted in the Single Chip
Mote digital system.

HMASTLOCK AHB locked transfer output. This is always 0 and is omitted in the
Single Chip Mote digital system.

HPROT[3:0] AHB transfer protection output. AHB slaves do not have to use this
signal and therefore it is omitted in the Single Chip Mote digital system.

HSIZE[2:0] AHB transfer size output. Indicates a byte, half-word, or word transfer.

HTRANS[1:0] AHB transfer type output. This is only set to idle or non-sequential,
and therefore HTRANS[0] is always 0. HTRANS[0] is omitted in the Single Chip
Mote digital system.

HWDATA[31:0] AHB write data output.

HWRITE AHB write output. Indicates that the transfer is a write when 1.

HRDATA[31:0] AHB read data input.

HREADY AHB transfer �nished input. This is used to stall the Cortex-M0 when the
slave is not �nished with the transfer.

HRESP AHB error response input. AHB slaves in the Single Chip Mote digital system
do not use this signal and therefore it is assigned to 0.

NMI Non-maskable interrupt input. This interrupt is not used in the Single Chip
Mote digital system and therefore it is assigned to 0.

IRQ[15:0] Interrupt request inputs for up to 16 interrupts. Only four are in use
right now and the rest are assigned to 0.

TXEV Event output. This is not used in the Single Chip Mote digital system.

RXEV Event input. This is not used in the Single Chip Mote digital system and is
assigned to 0.

43

LOCKUP Lockup output. Indicates that the core is locked-up.

SYSRESETREQ System reset request output. Used to send a request for a reset to the
PON module.

SLEEPING Sleeping output. Indicates that the core and NVIC are sleeping.

3.10 cortexm0ds_logic

3.10.1 Description

This module, provided by ARM in the DesignStart kit, contains the obfuscated
Verilog describing the ARM Cortex-M0 DesignStart processor. This module is in-
stantiated only in CORTEXM0DS and must not be instantiated by any other module
in the design. This module must not be modi�ed.

3.11 PON

3.11.1 Description

This module is designed to handle all of the clock and reset signals in the Single Chip
Mote digital system. This includes dividing down the 100MHz input clock into all
other required clocks, bu�ering additional clock inputs, debouncing the input reset
signal, and listening for reset requests from the Cortex-M0.

3.11.2 Input/Output Ports

CLK_100Mz 100MHz input clock from the FPGA board.

CLK_RX_IN External clock input for both receiving radio packets (CLK_RX, 2MHz)
and receiving bootloading data (chapter 5) over the 3 Wire Bus (CLK_3WB,
5MHz).

CLK_RX_EN Clock enable input for the radio receive clock (CLK_RX). This enable
signal is used to ensure that the RFcontroller module only uses the external
clock when listening for radio packets.

CLK_3WB_EN Clock enable input for the 3 Wire Bus clock (CLK_3WB). This enable
signal is used to ensure that the AHBIMEM module only uses the external clock
when listening for bootloading data (chapter 5).

RESETn_in Input reset signal from a button on the FPGA board.

SYSRESETREQ Reset request input from the Cortex-M0.

CLK_5MHz 5MHz clock output used by most of the Single Chip Mote digital system.
This is assigned at the top level to HCLK.

CLK_TX 2MHz output clock used by the RFcontrollermodule to send radio packets.
This is assigned at the top level to CLK_TX.

44

CLK_TX_OUT 2MHz clock output. The output is a copy of CLK_TX routed to an
output on FPGA. This output is used by the radio circuit to send packets.
This is assigned at the top level to the tx_clk output pin.

CLK_RX 2MHz clock output used by the RFcontroller module to listen for radio
packets. This is a bu�ered version of the CLK_RX_IN input clock, enabled or
disabled with the CLK_RX_EN input. This is assigned at the top level to CLK_RX.

CLK_3WB 5MHz clock output used by the AHBIMEM module to listen for bootloading
data (chapter 5). This is a bu�ered version of the CLK_RX_IN input clock,
enabled or disabled with the CLK_3WB_EN input. This is assigned at the top
level to CLK_3WB.

CLK_RFTIMER 500kHz clock output used by the RFTIMER module for its timer. This
is assigned at the top level to CLK_RFTIMER.

HARD_RESETn_out Hard reset output. The hard reset is active-low. This reset is
activated when the external reset button is pressed and not when SYSRESETREQ

is asserted. This hard reset is only used in the AHBIMEM module for bootloading
purposes (chapter 5). This is assigned at the top level to HARD_RESETn.

SOFT_RESETn_out Soft reset output. This soft reset is active-low. This reset is ac-
tivated when either the external reset button is pressed or when SYSRESETREQ

is asserted. This soft reset is used by every module in the Single Chip Mote
digital system. This is assigned at the top level to HRESETn.

3.11.3 Design Details

On an FPGA this module instantiates special primitives used to deal with bu�ering
input clocks, dividing input clocks, attaching derived clocks to the FPGA's clock
nets, and bu�ering any output clocks. See Xilinx documentation for more infor-
mation on how to use the primitives mentioned in this section. This module uses
the pb_debounceRESET module written by Bigazzi, to debounce the input reset sig-
nal. This module also uses the ClockDiv module written by Bigazzi to divide the
100MHz clock into slower clocks that cannot be achieved using FPGA primitives.
Note that there are slight di�erences in the available FPGA primitives on the Artix-7
and Spartan-6.

Input Clock Bu�ering

Both the Artix-7 and Spartan-6 versions of the PON module use the IBUFG primitive
to bu�er input clocks. This is required whenever a clock is fed into the FPGA from
outside. There is an instantiated IBUFG module for both CLK_100MHz and CLK_RX.

Clock Division

The Artix-7 and Spartan-6 FPGAs use separate primitives for clock division. The
Artix-7 version of this module uses MMCME2_ADV and the Spartan-6 version uses
DCM_SP. On both FPGAs these primitives have a limited range of division. With a
100MHz input clock, the lowest possible frequency is 2.5MHz. Therefore these prim-
itives are only used to divide the 100MHz input to 5MHz for CLK_5MHz. All slower

45

clocks, such as CLK_TX at 2MHz, and CLK_RFTIMER at 500kHz, use the ClockDiv

module.
While Xilinx provides documentation on how to instantiate the primitives for

clock division, it is not recommended that this be done manually. Instead, it is
better to use the Clocking Wizard in CORE Generator to create a core that meets
the required speci�cations (in this case to divide 100MHz to 5MHz). Once the
core is been created and added to the project, running the View HDL Functional
Model process (see Figure 3.7) generates the Verilog code for instantiating all of the
required clocking primitives. The code in PON was created by copying the generated
code and adding the additional input clocks and clock dividers.

The ClockDiv module is a counter-based clock divider with an output that in-
verts after a maximum count is reached. Therefore, the output clock period is
Tout = 2 × MAX_COUNT × Tin. This method of clock division is not recom-
mended on FPGAs; however, this method is the only way to generate clocks less
than 2.5MHz, and therefore is used for CLK_TX and CLK_RFTIMER.

Derived Clock Bu�ering

After the input clocks have been divided, using either primitives or ClockDiv, the
derived clocks must be attached to a clock bu�er in order to route the clocks on
the dedicated clock nets within the FPGAs. Any input clocks that are not divided,
such as CLK_RX_IN, must also be attached to a clock bu�er directly from the input
clock bu�er primitive. This is done using either the BUFG or BUFGCE primitives. The
BUFG primitive is used for continuously running clocks such as CLK_5MHz, CLK_TX,
and CLK_RFTIMER. The BUFGCE primitive is used for all clocks requiring an enable
signal such as CLK_RX and CLK_3WB.

Output Clock Bu�ering

Any clocks sent to an output pin on the FPGA must �rst be routed to an the input
of an output bu�er through a method called clock forwarding. On the Artix-7,
clock forwarding is accomplished by �rst feeding the clock into an ODDR primitive,
and then feeding the output of that into an OBUF primitive. On the Spartan-6, the
ODDR2 primitive is used instead of the ODDR.

Resets

The pb_debounceRESET module is designed by Bigazzi to debounce the input reset
signal before sending it to the rest of the Single Chip Mote digital system. This
is necessary because pressing buttons on the FPGA board leads to unstable or
�uctuating outputs before the signal converges. A simple debouncer waits for the
signal to be stable for multiple cycles before changing the output, to remove any
glitches. This module also sends out a pulse when the signal is stable. This module is
a slightly modi�ed version of the pb_debouce module provided in the ARM Cortex-
M0 DesignStart kit. Bigazzi modi�ed this code such that the output is active-low
instead of active-high. The pulse generated when the input is stable is used as the
hard reset, HARD_RESETn_out.

In order to deal with reset requests from the Cortex-M0, the hard reset sig-
nal is also combined with the SYSRESETREQ signal and then clocked into a register

46

Figure 3.7: View HDL Functional Model for a generated core

(see Figure 3.8). The output of this register is the soft reset, SOFT_RESETn_out.
The SYSRESETREQ signal is asynchronous, and must be synchronized outside of the
Cortex-M0 before being used for a reset, hence the register. While this does force
the soft reset to be 1 cycle behind the hard reset, only one part of the AHBIMEM
module uses the hard reset signal instead of the soft reset, and the timing di�erence
is acceptable.

pb_debounceRESET

SYSRESETREQ

RESETn_in
HART_RESETn_out

D Q

CLK_5MHz

SOFT_RESETn_out

Figure 3.8: Reset handling in the PON module

47

3.12 pb_debounceRESET

3.12.1 Description

This module is used to debounce the output signal from a button on the FPGA board
used as the reset input to the Single Chip Mote digital system. This module is a
slightly modi�ed version of the pb_debouce module provided in the ARM Cortex-
M0 DesignStart kit. Bigazzi modi�ed this code such that the output is active-low
instead of active-high.

3.12.2 Input/Output Ports

clk The input clock used to sample and synchronize the input signal.

resetn Active-low reset input. This is not the reset signal that is being debounced.
Instead, this is the reset signal used to reset the pb_debounceRESET module
itself. This is a remnant of the original pb_debounce module and is not used in
pb_debounceRESET when instantiated inside the PON module. Therefore this
signal is assigned to its inactive value, 1.

pb_in Input signal to be sampled and debouced. This is where the input reset
signal is attached.

pb_out Stabilized output signal. This is a remnant of the original pb_debounce
module and is not used in pb_debounceRESET when instantiated in the PON

module. Therefore this output is ignored.

pb_tick Output pulse when the input has changed and is stable. When the input
signal changes and the debouncer considers it stable, this active-high output
changes to low for 1 cycle. This is used as the reset signal in the PON module.

3.12.3 Design Details

This module samples the pb_in input using clk. When the input changes from 0
to 1, a counter begins counting down from {21{1�b1}} to 0. If the signal remains
stable by the time the counter reaches 0, the pb_out output changes from 0 to 1.
At the same time, the pb_tick output, with a default value of 1, changes to 0 for
a single cycle. When the input goes back to 0, the output follows. If the signal
changes to 0 before the counter reaches 0, the counter is reset and the module waits
for pb_in to change again.

The button used for the reset signal on the Nexys 3 board is an active-high
button. The output is low when the button is not pressed, and the output is high
when the button is pressed. In contrast, the button used for the reset signal on
the Nexys 4 DDR board is an active-low button, where the output is high when
not pressed, and low when pressed. The same pb_debounceRESET module is used
for both, because the pb_tick output is used for the reset output instead of the
pb_out output, and thus the behavior when a button is pressed is almost the same.
The pb_tick output sends an active-low single-cycle pulse when the input changes
from low to high and is stable. In the case of the Nexys 3 this happens when the
button is pressed and held. In the case of the Nexys 4 DDR this happens when

48

a pressed button is released. It may be worthwhile in the future to modify the
behavior of pb_debounceRESET to work for both types of buttons using the pb_out
output instead.

3.13 ClockDiv

3.13.1 Description

This module was originally designed by Bigazzi to divide the 100MHz input clock
down to 5MHz. This module has since been parameterized to divide a clock down by
any amount and is currently used to divide the 100MHz clock to 2MHz and 500kHz.

3.13.2 Input/Output Ports and Parameters

CLK_IN Input clock to be divided.

RESETn Input reset.

CLK_OUT Divided output clock.

MAX_COUNT Parameter describing the number of cycles to count before inverting the
output clock signal.

3.13.3 Design Details

This clock divider is implemented with a counter that increments from 0 to MAX_COU-
NT-1 and then wraps around. Every time the counter reaches MAX_COUNT-1 the
CLK_OUT output inverts. The clock period of the output is:

Tout = 2×MAX_COUNT × Tin

This method of clock division is not recommended on FPGAs; however, this method
is the only way to generate clocks less than 2.5MHz given that there are no FPGA
primitives able to divide a 100MHz clock below 2.5MHz.

3.14 AHBDCD

3.14.1 Description

This module, adapted from the example provided in the ARM Cortex-M0 Design-
Start kit, is used to determine which AHB slave is being accessed during an AHB
transfer. It decodes HADDR[31:24] to generate a HSEL signal for each slave, as well
as the MUL_SEL[3:0] signal sent to the AHBMUX module. This module supports up
to 15 AHB slaves.

49

3.14.2 Input/Output Ports

HADDR[31:24] Address input. Only the 8 upper bits are necessary and the other
bits are omitted.

HSEL_S0 Slave select output for the �rst AHB slave. In the Single Chip Mote digital
system this is the AHBIMEM module. The AHBIMEM module is connected to the
AHB using two AHB interfaces, with one for fetching instructions and another
for bootloading (chapter 5). HSEL_S0 is for fetching instructions.

HSEL_S1 Slave select output for the second AHB slave. In the Single Chip Mote
digital system this is the AHBsub bus, via the AHBLiteArbiter_V2 module.

HSEL_S2 Slave select output for the third AHB slave. In the Single Chip Mote
digital system this is the DMA_V2 module.

HSEL_S3 Slave select output for the fourth AHB slave. In the Single Chip Mote
digital system this is the APB, via the AHB2APB module.

HSEL_S4 Slave select output for the �fth AHB slave. In the Single Chip Mote digital
system this is the AHBIMEM module. The AHBIMEM module is connected to the
AHB using two AHB interfaces, with one for fetching instructions and another
for bootloading (chapter 5). HSEL_S4 is for bootloading.

HSEL_S5 Slave select output for the sixth AHB slave. In the Single Chip Mote
digital system this is the APB, via the RFTIMER module.

HSEL_NOMAP Slave select output indicating that the current address does not map
to any AHB slaves. This output is omitted in the Single Chip Mote digital
system.

MUL_SEL[3:0] Output to the AHBMUX module indicating which slave is selected.
This is used to route the correct set of slave signals to the AHB master.

3.14.3 Design Details

This module only contains combinational logic to set the HSEL and MUL_SEL outputs
using the 8 upper bits of HADDR. This is done using a casex statement with the
pre�xes de�ned in REGISTERS.vh. A casex statement is used in order to facilitate
the use one single pre�x for all APB slaves, by having the 4 upper bits match
4�b0101 and the 4 lower bits match 4�bxxxx. As long as the 4 upper bits of all
APB slave pre�xes begin with 4�b0101, then the HSEL signal for the APB bridge
(AHB2APB) is correct.

Inside the casex statement, the 16-bit dec bus is assigned along with MUX_SEL. If
the case is for the nth slave (where n=0 for the �rst slave, n=1 for the second), then
dec[n] must be assigned to 1. All other bits in dec must be assigned 0. MUX_SEL

must also be assigned to the binary value of n.

50

3.14.4 Adding Another AHB Slave

Adding a new AHB slave in this module requires the following steps:

1. De�ne an address pre�x for the slave in REGISTERS.vh.

2. Add another HSEL output.

3. Add another case to the casex statement using the new address pre�x. Make
sure to set the dec and MUX_SEL signals correctly as described above.

4. Assign the new HSEL output to the corresponding bit in dec.

5. Connect the new HSEL output to the new slave/peripheral in the top module,
uCONTROLLER.

3.15 AHBMUX

3.15.1 Description

This module, adapted from the example provided in the ARM Cortex-M0 De-
signStart kit, is used to select the correct set of AHB slave signals (HRDATA and
HREADYOUT) from the APB slave being accessed during the current transfer. The
slave signals are chosen based on the MUX_SEL signal provided by AHBDCD. This
module supports up to 15 slaves.

3.15.2 Input/Output Ports

HCLK Input clock.

HRESETn Input reset.

MUX_SEL[3:0] Input from AHBDCD indicating which AHB slave is selected for the
current transfer.

HRDATA_S0[31:0] Read data input from the �rst AHB slave. In the Single Chip
Mote digital system this is the AHBIMEM module. The AHBIMEM module is
connected to the AHB using two AHB interfaces, with one for fetching in-
structions and another for bootloading (chapter 5). HRDATA_S0 is for fetching
instructions.

HRDATA_S1[31:0] Read data input from the second AHB slave. In the Single Chip
Mote digital system this is the AHBsub bus, via the AHBLiteArbiter_V2

module.

HRDATA_S2[31:0] Read data input from the third AHB slave. In the Single Chip
Mote digital system this is the DMA_V2 module.

HRDATA_S3[31:0] Read data input from the fourth AHB slave. In the Single Chip
Mote digital system this is the APB, via the AHB2APB module.

51

HRDATA_S4[31:0] Read data input from the �fth AHB slave. In the Single Chip
Mote digital system this is the AHBIMEM module. The AHBIMEM module is con-
nected to the AHB using two AHB interfaces, with one for fetching instructions
and another for bootloading (chapter 5). HRDATA_S4 is for bootloading.

HRDATA_S5[31:0] Read data input from the sixth AHB slave. In the Single Chip
Mote digital system this is the RFTIMER module.

HRDATA_NOMAP[31:0] Read data input to be used when the current address does
not map to any AHB slaves.

HREADYOUT_S0 Transfer �nished input from the �rst AHB slave. In the Single Chip
Mote digital system this is the AHBIMEM module. The AHBIMEM module is con-
nected to the AHB using two AHB interfaces, with one for fetching instruc-
tions and another for bootloading (chapter 5). HREADYOUT_S0 is for fetching
instructions.

HREADYOUT_S1 Transfer �nished input from the second AHB slave. In the Single
Chip Mote digital system this is the AHBsub bus, via the AHBLiteArbiter_V2
module.

HREADYOUT_S2 Transfer �nished input from the third AHB slave. In the Single Chip
Mote digital system this is the DMA_V2 module.

HREADYOUT_S3 Transfer �nished input from the fourth AHB slave. In the Single
Chip Mote digital system this is the APB, via the AHB2APB module.

HREADYOUT_S4 Transfer �nished input from the �fth AHB slave. In the Single Chip
Mote digital system this is the AHBIMEM module. The AHBIMEM module is con-
nected to the AHB using two AHB interfaces, with one for fetching instructions
and another for bootloading (chapter 5). HREADYOUT_S4 is for bootloading.

HREADYOUT_S5 Transfer �nished input from the sixth AHB slave. In the Single Chip
Mote digital system this is the RFTIMER module.

HREADYOUT_NOMAP Transfer �nish input to be used when the current address does
not map to any AHB slaves. This input must always be assigned to 1 to avoid
inde�nitely stalling the Cortex-M0 if it tries to access an unmapped address.

HREADY Multiplexed transfer �nish output to the AHB master.

HRDATA[31:0] Multiplexed read data output to the AHB master.

3.15.3 Design Details

The address, HADDR, is valid during an address phase of a transfer, and therefore that
the MUX_SEL is also only valid during the address phase. The MUX_SEL signal must
be latched before moving on to the data phase. This is done by storing MUX_SEL

into a register, APHASE_MUX_SEL, whenever HREADY is 1. APHASE_MUX_SEL is then
used in a case statement to assign the correct slave signals to HRDATA and HREADY.

52

3.15.4 Adding Another AHB Slave

Adding a new AHB slave in this module requires the following steps:

1. Add this slave to AHBDCD. See section 3.14.4 for more details.

2. Add another HRDATA and HREADYOUT input.

3. Add another case to the case statement using the new value of MUX_SEL cor-
responding to the new slave. Assign HRDATA and HREADY.

4. Connect the new HRDATA and HREADYOUT inputs to the new slave/peripheral
in the top module, uCONTROLLER.

3.16 AHBLiteArbiter_V2

3.16.1 Description

This module is an arbiter designed to allow for two masters (referred to as M0 and
M1) to share a single AHB-Lite bus. This module is necessary in order to allow the
Cortex-M0 and the DMA to both access the data memory and the radio controller
via the AHBsub bus. Master M0 is the Cortex-M0, via the main AHB bus. Master
M1 is the DMA. In this module, the slave refers to the AHBsub bus. The intended
behavior of this arbiter is as follows:

� M0 does not experience any latency for any AHB transfers when M1 is not
attempting to transfer at the same time. This means that, while the DMA is
idle, the Cortex-M0 has to access both the data memory and radio controller
as if it were on the main AHBbus, with no extra latency.

� M1 may experience at least 1 cycle of additional latency when accessing the
bus, even if master M0 is idle. This is a consequence of the previous rule.

� When both M0 and M1 initiate a transfer at the same time, after a period of
no transfers, M0 has priority. Initiating a transfer means the master asserts
HTRANS[1] and HSEL; this also indicates the address phase of the transfer.

� When both M0 and M1 initiate a transfer at the same time, during a series
of back-to-back transfers, the master that was not granted the last transfer is
granted the next transfer.

Given that the AHBsub bus is primarily used by the Cortex-M0 to access data
memory, it is important that the Cortex-M0 experience no latency when accessing
the data memory under normal conditions. In contrast, the DMA only accesses the
AHBsub bus when the Single Chip Mote is sending or receiving a radio packet, and
the relatively slow data rate does not require that the DMA have high throughput
or low latency. Therefore, it is acceptable to have additional latency for M1 and
give priority during an initial collision to M0.

53

3.16.2 Input/Output Ports

HCLK Input clock.

HRESETn Input reset.

HSEL_M0 Slave select input from master M0.

HADDR_M0[31:0] Address input from master M0.

HTRANS_M0[1] Transfer type input from master M0.

HSIZE_M0[1:0] Transfer size input from master M0.

HWRITE_M0 Write select input from master M0.

HWDATA_M0[31:0] Write data input from master M0.

HRDATA_M0[31:0] Read data output to master M0.

HREADY_M0 Transfer �nished output to master M0.

HSEL_M1 Slave select input from master M1.

HADDR_M1[31:0] Address input from master M1.

HTRANS_M1[1] Transfer type input from master M1.

HSIZE_M1[1:0] Transfer size input from master M1.

HWRITE_M1 Write select input from master M1.

HWDATA_M1[31:0] Write data input from master M1.

HRDATA_M1[31:0] Read data output to master M1.

HREADY_M1 Transfer �nished output to master M1.

HADDR_S[31:0] Address output to slave.

HTRANS_S[1] Transfer type output to slave.

HSIZE_S[1:0] Transfer size output to slave.

HWRITE_S Write select output to slave.

HWDATA_S[31:0] Write data output to slave.

HRDATA_S[31:0] Read data input from slave.

HREADYOUT_S Transfer �nished input from slave.

error Indicates that the arbiter reached an invalid state at some point. This sig-
nal is included for debugging purposes but is typically ignored. Currently,
synthesis tools remove this signal during optimization.

54

3.16.3 Design Details

ARM provides in their Cortex-M System Design Kit [9] a bus matrix designed to
allow for multiple masters to control a single AHB bus or even a single AHB slave.
This module is both �exible in its use and allows for customization, and also bene�ts
from being tested and proven to work. Unfortunately, the System Design Kit is not
part of the DesignStart kit and must be purchased separately. There were multiple
attempts prior to this work by visiting scholars Francesco Bigazzi and Lorenz Schmid
(both working independently) to create a simpli�ed but analogous arbiter design, all
of which failed to function without error on real-time FPGA tests. Arbitration errors
caused unpredictable behavior when both masters attempted to access peripherals
on the AHBsub bus at the same time.

Design Issues

The main cause of di�culty in the design of this arbiter is the inability to com-
pletely describe its function in the form of a �nite state machine or a series of basic
rules/steps. This is attributed to the following complications:

� AHB transfers happen in two phases, the address and data phase. The arbiter
must have a way to keep track of the phases for each master.

� AHB transfers can be pipelined, and each master could be in both the address
and data phase at the same time.

� The AHB protocol expects that the slave latches address phase signals when
necessary because of pipelined transfers. Given that there are two masters,
this means that the each master must be tracked to ensure that address phase
signals are latched properly when one master is stalled.

These complications imply that the arbiter must keep track of the following state:

� Which master's address phase signals are routed to the slave.

� Which master's dataphase signals are routed to the slave.

� Which master is connected to the slave's dataphase signals. This concerns
the HREADYOUT_S signal in particular, as the stalled master must not see the
HREADYOUT_S signal when the other master is using the bus.

� If either of the masters have address phase signals latched from when the other
master was using the bus.

And the arbiter must make the following decisions depending on the state:

� Which master's address phase signals to route to the slave during the next
cycle. This includes address phase signals that were latched from a stalled
master. This is where the arbitration takes place; the result depends on which
master is currently using the bus.

� Which master's data phase signals to route to the slave during the next cycle.
This depends on whether or not the transfer is complete (HREADYOUT_S is
asserted), and which address phase signals are currently routed to the slave.

55

� Whether or not any address phase signals need to be latched because one
master must be stalled. Address phase signals only need to be latched when
the master is not waiting for its own data phase to �nish. When the master
is waiting for a data phase to complete, it is su�cient to keep HREADY low.
This stalls the master causing it to continue to hold its address phase signals.
However, if the master is not waiting (from its point of view it is initiating its
�rst transfer after being idle), the master assumes the slave latches the address
phase signals and only holds the valid signals for 1 cycle. This behavior is a
consequence of pipelined transfers in the AHB protocol.

The amount of state that must be tracked for both masters and the slave makes
it di�cult to create a concise description of the arbiter's behavior. It was eventually
determined that the best way to design this module was to enumerate every possible
state and determine the actions and next state in a large table. From there, the
address phase and data phase signals could be routed properly and the combinational
logic to describe the table could be written in Verilog. While this solution is far from
the best possible design practice, the current AHBLiteArbiter_V2 implementation
continuously proves to work properly when tested in real-time on an FPGA.

State Variables and Inputs

The state variables used to route signals and determine the next state in this module
are:

current_address_phase[1:0] This state describes which set of address phase sig-
nals are currently routed to the slave. Possible values are APHASE_PASS_M0,
APHASE_LATCH_M0, and APHASE_LATCH_M1.

current_data_phase[1:0] This state describes which set of data phase signals are
currently routed to the slave and back. Possible values are DPHASE_NONE,
DPHASE_M0, and DPHASE_M1.

inputs_latched_M0 This state indicates whether or not there are currently any
latched address signals from M0. This can happen when M0 must be stalled
while the bus is in use. This state is needed when determining the next address
phase.

inputs_latched_M1 This state indicates whether or not there are currently any
latched address signals from M1. This can happen when M1 must be stalled
while the bus is in use. This also happens when M1 uses the bus after an idle
period since M0 continues to have priority when idle, and its address phase
signals are always connected to the slave when idle. This state is needed when
determining the next address phase.

In addition to the state variables, the following inputs are needed to determine
the next state in this module:

req_M0 This signal is the bitwise AND of the HSEL_M0 and HTRANS_M0[1] inputs,
used to indicate that M0 is requesting use of the bus. This combination of
inputs is needed when determining the next address phase.

56

req_M1 This signal is the bitwise AND of the HSEL_M1 and HTRANS_M1[1] inputs,
used to indicate that M1 is requesting use of the bus. This combination of
inputs is needed when determining the next address phase.

Combinational Logic Based on State Variables and Inputs

The current_address_phase state is used to route the address phase signals from
one of the masters to the slave, and the current_data_phase state is used to route
the dataphase signals between one master and the slave.

APHASE_PASS_M0 means that address phase signals are passed directly from M0
to the slave, with no registers in between. APHASE_LATCH_M0 means that address
phase signals latched from M0 during a previous cycle are routed to the slave.
APHASE_LATCH_M1 means that address phase signals latched from M1 during a pre-
vious cycle are routed to the slave. The default value is APHASE_PASS_M0.

DPHASE_NONE means that all data phase signals are 0 because neither master
is waiting for a slave. DPHASE_M0 means that HWDATA_M0 is routed to the slave,
HREADYOUT_S is routed to HREADY_M0, and HREADY_M1 is 0. DPHASE_M1 means
that HWDATA_M1 is routed to the slave, HREADYOUT_S is routed to HREADY_M1. and
HREADY_M0 is 0.

In addition to choosing the next state, new address phase signals may need to
be latched or cleared. This is indicated by the latch_M0, latch_M1, clr_M0, and
clr_M1 signals assigned within the next state logic.

State Transition and Action Table

Appendix A.1 contains the table listing the inputs, state variables, next state, and
actions to be taken, for every combination of state and input. This table was used
to implement the next state combinational logic in AHBLiteArbiter_V2. Note that
some states are labeled as �invalid state�; these states should be impossible to reach.
However, the code is designed such that if one of those states were detected, the
error output is set to 1 and stays that way until the system is reset.

3.17 AHBDCDsub

3.17.1 Description

This module is the same as the AHBDCD module described in section 3.14. The main
di�erence is that this module is designed to be used for the AHBsub bus and has
two slaves: the AHBDMEM module and the RFcontroller module. Also, the width of
the MUX_SEL signal is reduced such that this module now only supports three slaves.

3.17.2 Input/Output Ports

HADDR[31:24] Address input. Only the 8 upper bits are necessary and the other
bits are omitted.

HSEL_S0 Slave select output for the �rst AHB slave. In the Single Chip Mote digital
system this is the AHBDMEM module.

57

HSEL_S1 Slave select output for the second AHB slave. In the Single Chip Mote
digital system this is the RFcontroller module.

HSEL_NOMAP Slave select output indicating that the current address does not map
to any AHB slaves. This output is omitted in the Single Chip Mote digital
system.

MUL_SEL[1:0] Output to the AHBMUX module indicating which slave is selected.
This is used to route the correct set of slave signals to the AHB master.

3.17.3 Design Details

See section 3.14.

3.17.4 Adding Another AHB Slave

See section 3.14.

3.18 AHBMUXsub

3.18.1 Description

This module is the same as the AHBMUX module described in section 3.15. The main
di�erence is that this module is designed to be used for the AHBsub bus and has
two slaves: the AHBDMEM module and the RFcontroller module. Also, the width of
the MUX_SEL signal is reduced such that this module now only supports three slaves.

3.18.2 Input/Output Ports

HCLK Input clock.

HRESETn Input reset.

MUX_SEL[3:0] Input from AHBDCD indicating which AHB slave is selected for the
current transfer.

HRDATA_S0[31:0] Read data input from the �rst AHB slave. In the Single Chip
Mote digital system this is the AHBDMEM module.

HRDATA_S1[31:0] Read data input from the second AHB slave. In the Single Chip
Mote digital system this is the RFcontroller module.

HRDATA_NOMAP[31:0] Read data input to be used when the current address does
not map to any AHB slaves.

HREADYOUT_S0 Transfer �nished input from the �rst AHB slave. In the Single Chip
Mote digital system this is the AHBDMEM module.

HREADYOUT_S1 Transfer �nished input from the second AHB slave. In the Single
Chip Mote digital system this is the RFcontroller module.

58

HREADYOUT_NOMAP Transfer �nish input to be used when the current address does
not map to any AHB slaves. This input must always be assigned to 1 to avoid
inde�nitely stalling the Cortex-M0 if it tries to access an unmapped address.

HREADY Multiplexed transfer �nish output to the AHB master.

HRDATA[31:0] Multiplexed read data output to the AHB master.

3.18.3 Design Details

See section 3.15.

3.18.4 Adding Another AHB Slave

See section 3.15.

3.19 AHBIMEM

3.19.1 Description

This module provides access to the instruction memory for the Cortex-M0. The
instruction memory is composed of a 16kB ROM and a 64kB SRAM (referred to
from now on as the instruction RAM). Only one of the two memories are in use at
any particular time. Instructions are fetched from the ROM when the Single Chip
Mote digital system initially turns on, or after a hard reset. The code in the ROM is
designed to load the main software code into the RAM, and then initiate a soft reset.
After the soft reset, instructions are fetched from the RAM. The main software code
is written into the RAM directly through an external 3 Wire Bus interface, or via
the AHB bus from the Cortex-M0. The Cortex-M0 has the option to listen for
instructions via UART, over the radio, or even through an optical interface (this
has not been designed yet). For more information on bootloading, see chapter 5.

This module has two AHB slave interfaces. The �rst slave interface is used to
read from the instruction memory. The HWRITE signal is ignored, as instruction
memory is considered read-only, even when the SRAM is in use. All instruction
fetches are assumed to be the size of a word (32 bits) and word-aligned, and therefore
the HSIZE signal from the AHB is omitted. The second slave interface is used to
load data into the instruction RAM. This interface has one special address allocated
for a con�guration register. All other addresses correspond to an address in the
instruction RAM. AHB writes overwrite data in either the con�guration register or
the instruction RAM. AHB reads return the contents of a special status register,
regardless of the address used. All writes are assumed to be the size of a word (32
bits) and word-aligned, and therefore the HSIZE signal from the AHB is omitted.

3.19.2 Input/Output Ports and Parameters

RESETn Hard reset input. This reset is triggered externally from the FPGA board.

HRESETn Soft reset input. This reset is triggered either externally from the FPGA
board or internally via a reset request from the Cortex-M0.

59

HSEL_IMEM Slave select input for the instruction memory AHB interface.

HSEL_BOOTLOAD Slave select input for the bootloading AHB interface.

HREADY Transfer �nished input. This input indicates that the previous transfer on
the bus has �nished and that address phase signals must be latched.

HADDR[31:0] Address input.

HTRANS[1] Transfer type input.

HWRITE Write select input.

HWDATA[31:0] Write data input.

HREADYOUT_IMEM Transfer �nished output from the instruction memory AHB inter-
face.

HRDATA_IMEM[31:0] Read data output from the instruction memory AHB interface.

HREADYOUT_BOOTLOAD Transfer �nished output from the bootloading AHB interface.

HRDATA_BOOTLOAD[31:0] Read data output from the bootloading AHB interface.

clk_3wb Clock input for the 3 Wire Bus.

data_3wb Data input for the 3 Wire Bus.

latch_3wb Latch input for the 3 Wire Bus.

clk_3wb_en Clock enable output to disable clk_3wb when not in use.

ROM_ADDR_WIDTH Parameter describing the size of the instruction ROM. The num-
ber of address bits needed for the word-addressable instruction ROM is equal to
this parameter, and the depth of the instruction ROM is 2ROM_ADDR_WIDTH .
Note that the addresses in HADDR are byte, not word, addresses.

RAM_ADDR_WIDTH Parameter describing the size of the instruction RAM. The num-
ber of address bits needed for the word-addressable instruction RAM is equal to
this parameter, and the depth of the instruction RAM is 2RAM_ADDR_WIDTH .
Note that the addresses in HADDR are byte, not word, addresses.

3.19.3 Design Details

This module uses the imem_mode register to determine the source of instruction
data, and connects that source to the AHB interface for fetching instructions. In-
struction data can come from either the ROM or the RAM, and therefore, the two
possible states for the imem_mode register are IMEM_MODE_ROM and IMEM_MODE_RAM.
The imem_mode register is only updated on a hard or soft reset, to ensure that the
source of instruction data does not change while the Single Chip Mote digital sys-
tem is running. On a hard reset, imem_mode is set by default to IMEM_MODE_ROM. On
a soft reset, imem_mode is set to the value stored in the next_imem_mode register.

60

imem_mode Encoding
IMEM_MODE_ROM 1'b0

IMEM_MODE_RAM 1'b1

Figure 3.9: Encodings for the two imem_mode states

boot_mode Encoding
BOOT_MODE_NONE 2'b00

BOOT_MODE_3WB 2'b10

BOOT_MODE_AHB 2'b11

Figure 3.10: Encodings for the three boot_mode states

This register is set by the Cortex-M0 via the bootloading AHB interface to be ei-
ther IMEM_MODE_ROM or IMEM_MODE_RAM. Figure 3.9 contains the encoded values for
IMEM_MODE_RAM and IMEM_MODE_ROM.

This module uses the boot_mode register to determine from which source the in-
struction RAM is written. The three possible states for this register are BOOT_MODE-
_NONE, BOOT_MODE_3WB, and BOOT_MODE_AHB. BOOT_MODE_NONE means that the in-
struction RAM cannot be written. BOOT_MODE_3WB means that the instruction RAM
is written externally via the 3 Wire Bus. BOOT_MODE_AHB means that the instruction
RAM is written by the Cortex-M0 via the bootloading AHB interface. This state
register is con�gured by the Cortex-M0 via the bootloading AHB interface. Figure
3.10 contains the encoded values for all three boot modes.

When the boot_mode register is set to BOOT_MODE_3WB, the AHBIMEM module
enables the 3 Wire Bus clock input (using clk_3wb_en), and waits for 64kB of
data to be written into the instruction RAM. This is accomplished using a counter,
doubling as the write address to the instruction RAM. This counter is initialized to
0 on a soft reset, and increments as each 32-bit word is written into the RAM. Once
this counter has reached its maximum value, indicating that 64kB has been written
to the RAM, the boot_3wb_done signal is asserted, and all other writes via the 3
Wire Bus are disabled. The 3 Wire Bus clock is also disabled. For more information
on the 3 Wire Bus protocol, see section 5.4.

When the boot_mode register is set to BOOT_MODE_AHB, the AHBIMEM module
connects the write port of the instruction RAM to the bootloading AHB interface.
This allows for the Cortex-M0 to write directly into the instruction RAM (although
it cannot read what is in the instruction RAM). The two AHB interfaces correspond
to two separate AHB slaves with their own address pre�xes. The pre�x for the
instruction fetching interface is 0x00 and the pre�x for the bootloading interface
is 0x01. Any writes to the RAM via the bootloading interface result in a write to
the corresponding address in the RAM where the 0x01 pre�x is replaced with 0x00.
For example, writing an instruction to address 0x0100CAD0 translates to address
0x0000CAD0 in the actual instruction memory. Since the instruction RAM is only
64kB, any writes to addresses beyond the �rst 64kB of instruction memory result in
overwriting instruction data within the �rst 64kB.

The bootloading AHB interface also has a dedicated write-only con�guration reg-
ister used to change next_imem_mode and boot_mode. Any AHB read transfer, re-
gardless of the address, from the bootloading AHB interface result in reading the sta-
tus register. This status register returns the values of imem_mode, next_imem_mode,

61

boot_mode, and boot_3wb_done. See the next section for details on these registers.

3.19.4 Register Interface

AHB Interface for Instruction Fetching

This AHB interface has no memory-mapped registers. All reads return instruction
data at the corresponding address in either the ROM or the RAM, and writes have
no e�ect. Valid addresses are in the range of 0x00000000-0x0000FFFF for a memory
size of 64kB.

AHB Interface for Bootloading

This AHB interface is used to write to the instruction RAM, and has one read-only
memory-mapped register and one write-only memory-mappped register. The �rst
64kB of addresses, 0x01000000-0x0100FFFF, are allocated to the write-only instruc-
tion RAM. The address 0x01F00000 corresponds to the write-only BOOTLOADER-

_REG__CFG register. The �elds of this register are boot_mode and next_imem_mode.
Reading from any register with the 0x01 pre�x returns the BOOTLOADER_REG__STAT-
US register. The �elds of this register contain imem_mode, next_imem_mode, boot-
_mode, and boot_3wb_done.

Register Descriptions

Register 3.1: BOOTLOADER_REG__CFG (0x010F00000)

ne
xt
_
im
em
_
m
od
e

2

bo
ot
_
m
od
e

1 0

boot_mode (Write-only) Bootloader data source. 00 = 01 = NONE, 10 = 3WB, and 11 =
AHB.

next_imem_mode (Write-only) Instruction data source. 0 = ROM and 1 = RAM.

62

Register 3.2: BOOTLOADER_REG__STATUS (0x010F00004)

bo
ot
_
3w
b_
do
ne

0

4

bo
ot
_
m
od
e

0 0

3 2

ne
xt
_
im
em
_
m
od
e

0

1

im
em
_
m
od
e

0

0

Reset

imem_mode Instruction data source. 0 = ROM and 1 = RAM.

next_imem_mode Instruction data source after next soft reset. 0 = ROM and 1 = RAM.

boot_mode Bootloader data source. 00 = 01 = NONE, 10 = 3WB, and 11 = AHB.

boot_3wb_done Booting through the 3 Wire Bus is �nished. 0 = not done and 1 = done.

3.20 instruction_ROM

3.20.1 Description

This module is a 16kB read-only memory constructed out of FPGA primitives using
CORE Generator. This ROM has a width of 32 bits and a depth of 4096, a read
enable port, and a read latency of 1 cycle. This ROM is initialized with a COE �le
containing the compiled binary C code for the bootloading �rmware. See chapter 5
for more information on bootloading.

3.20.2 Input/Output Ports

clka Input clock for the read port.

ena Enable input for the read port.

addra[11:0] Address input for the read port.

douta[31:0] Data output for the read port. This data is valid 1 cycle after ena is
asserted.

3.20.3 Design Details

The ROM was designed using the Block Memory Generator in CORE Generator.
Any changes to the parameters of this module, such as the width or depth, re-
quires opening the instruction_ROM.xco �le in CORE Generator, changing the
parameters, and then regenerating the core. To open this design in CORE Genera-
tor, open Project Navigator and double-click the instruction_ROM module in the
Design Hierarchy panel.

3.20.4 Initialization

Initializing the ROM requires a COE �le containing data with the same width
as the ROM, and a depth less than or equal to the depth of the ROM. In the

63

case of the Single Chip Mote digital system, the COE �le used to initialize the
instruction ROM contains the compiled C binary code for the bootloading �rmware.
This �rmware is �rst compiled into a binary (.bin) �le using Keil. From there the
Bin2coe tool (2.5.2) is used to convert the binary �le into a COE �le. And �nally,
the instruction_ROM.xco �le must be opened in CORE Generator, wherein there
is an option to specify a COE �le to initialize the instruction ROM. Then the core
must be generated again after entering the proper speci�cations. Any changes to
the COE �le require regeneration of the core.

3.21 instruction_RAM

3.21.1 Description

This module is a 64kB simple dual port SRAM constructed out of FPGA primitives
using CORE Generator. This RAM has a width of 32 bits and a depth of 16384.
The �rst port is for writing and the second port is for reading. The read port has a
read enable input, with a read latency of 1 cycle. The write port contains separate
write enable inputs for each byte 8-bit byte in the wordline (4 write enable inputs
in total), and writes take e�ect after a single cycle.

3.21.2 Input/Output Ports

clka Input clock for the write port.

ena Enable input for the write port. This must be asserted to write, even if wea is
asserted.

wea[3:0] Write enable input for each byte for the write port.

addra[13:0] Address input for the write port.

dina[31:0] Data input for the write port.

clkb Input clock for the read port.

enb Enable input for the read port.

addrb[13:0] Address input for the read port.

doutb[31:0] Data output for the read port. This data is valid 1 cycle after ena is
asserted.

3.21.3 Design Details

The RAM was designed using the Block Memory Generator in CORE Generator.
Any changes to the parameters of this module, such as the width or depth, re-
quires opening the instruction_RAM.xco �le in CORE Generator, changing the
parameters, and then regenerating the core. To open this design in CORE Genera-
tor, open Project Navigator and double-click the instruction_RAM module in the
Design Hierarchy panel.

64

3.22 AHBDMEM

3.22.1 Description

This module provides access to the data memory for the Cortex-M0. The data
memory is composed of a 64kB SRAM with a width of 32 bits and a depth of 16384.
This module supports byte, half-word, and word sized writes using the HSIZE input
from the AHB. This module is based on the AHB2MEM module provided in the ARM
Cortex-M0 DesignStart kit.

3.22.2 Input/Output Ports and Parameters

HCLK Input clock.

HRESETn Input reset.

HSEL Slave select input.

HREADY Transfer �nished input. This input indicates that the previous transfer on
the bus has �nished and that address phase signals must be latched.

HADDR[31:0] Address input.

HTRANS[1] Transfer type input.

HWRITE Write select input.

HSIZE[1:0] Transfer size input. HSIZE[2] is omitted because this module does not
support writes larger than one word.

HWDATA[31:0] Write data input.

HREADYOUT Transfer �nished output.

HRDATA[31:0] Read data output.

MEMWIDTH Parameter describing the size of the data memory. The number of address
bits needed for the word-addressable data memory isMEMWIDTH−2, and
the depth of the instruction RAM is 2MEMWIDTH−2. Note that the addresses
in HADDR are byte, not word, addresses.

3.22.3 Design Details

The original AHB2MEM module provided by ARM used an inferred SRAM with an
asynchronous read. However, the block RAMs on Xilinx FPGAs only support syn-
chronous reads, and asynchronous SRAM blocks cannot be used on the ASIC version
of the Single Chip Mote digital system. Therefore, the code was modi�ed to replace
the inferred RAM with the instantiation of the dmem_ram module, created in CORE
Generator. All that remains of the original code is the logic used to generate the
write enable signal for each byte in the wordline. These write enable signals are
created by combining HADDR[1:0] and HSIZE[1:0] (HSIZE[2] is omitted because
this module does not support writes larger than one word).

65

3.22.4 Register Interface

This AHB interface has no memory-mapped registers. All reads return the data
at the corresponding address in the RAM, and writes overwrite the data at the
corresponding address in the RAM. Valid addresses are in the range of 0x20000000-
0x2000FFFF for a memory size of 64kB.

3.23 dmem_ram

3.23.1 Description

This module is a 64kB simple dual port SRAM constructed out of FPGA primitives
using CORE Generator. This RAM has a width of 32 bits and a depth of 16384.
The �rst port is for writing and the second port is for reading. The read port has a
read enable input, with a read latency of 1 cycle. The write port contains separate
write enable inputs for each byte 8-bit byte in the wordline (4 write enable inputs
in total), and writes take e�ect after a single cycle.

3.23.2 Input/Output Ports

clka Input clock for the write port.

ena Enable input for the write port. This must be asserted to write, even if wea is
asserted.

wea[3:0] Write enable input for each byte for the write port.

addra[13:0] Address input for the write port.

dina[31:0] Data input for the write port.

clkb Input clock for the read port.

enb Enable input for the read port.

addrb[13:0] Address input for the read port.

doutb[31:0] Data output for the read port. This data is valid 1 cycle after ena is
asserted.

3.23.3 Design Details

The RAM was designed using the Block Memory Generator in CORE Generator.
Any changes to the parameters of this module, such as the width or depth, requires
opening the dmem_ram.xco �le in CORE Generator, changing the parameters, and
then regenerating the core. To open this design in CORE Generator, open Project
Navigator and double-click the dmem_ram module in the Design Hierarchy panel.

66

3.24 DMA_V2

3.24.1 Description

This module is the interface between the RFcontroller module and the data mem-
ory in the AHBDMEM module. This module copies packet data from the data mem-
ory to the RFcontroller for packet transmission, and also copies received packet
data from the RFcontroller to the data memory. This module operates indepen-
dently without any intervention from the Cortex-M0, allowing for packets to be
autonomously sent and received when the Cortex-M0 is sleeping.

A more complicated version of this module, DMA, was originally created by Bigazzi
to handle the transfer of both packet data and sampled data from the ADC. This
module was designed to interface with the original versions of the ADC and radio
controller written by Bigazzi. These modules are no longer in use since the analog
and radio circuits have been updated. The DMA_V2module is a slimmed-down version
of the original DMA module, designed to meet the minimum needs of the current
Single Chip Mote project and interface with the new radio circuit. In the future,
this module should be re-designed to include control for the APBADC_V2 module, as
well as any other features that may be useful for application development on the
Single Chip Mote.

3.24.2 Input/Output Ports

HCLK Input clock.

HRESETn Input reset.

HSEL Slave select input.

HTRANS[1] Transfer type input.

HWRITE Write select input.

HADDR[31:0] Address input.

HWDATA[31:0] Write data input.

HRDATA[31:0] Read data output.

HREADY Transfer �nished input. This input indicates that the previous transfer on
the bus has �nished and that address phase signals must be latched.

HREADYOUT Transfer �nished output.

oHSEL Slave select output for the AHB master interface.

oHSIZE[1:0] Transfer size output for the AHB master interface.

oHADDR[31:0] Address output for the AHB master interface.

oHWDATA[31:0] Write data output for the AHB master interface.

oHRDATA[31:0] Read data input for the AHB master interface.

67

oHTRANS[1] Transfer type output for the AHB master interface.

oHWRITE Write select output for the AHB master interface.

oHREADY Transfer �nished input for the AHB master interface. Used to stall the
AHB master when the slave is not �nished with the transfer.

rf_data_req Input from the RFcontroller module requesting packet data to be
fetched from the data memory.

rf_data_store Input from the RFcontroller module requesting packet data to be
stored to the data memory.

3.24.3 Design Details

Mode Select FSM

This module operates in three separate modes: IDLE, RF_DATA_STORE, and RF_DATA-
_GET. In IDLE mode, the module waits for requests from the RFcontroller module
via the rf_data_store and rf_data_req inputs. If rf_data_store is asserted, the
mode changes to RF_DATA_STORE. If rf_data_req is asserted, the mode changes
to RF_DATA_GET. These two modes trigger a series of AHB transfers to/from the
RFcontroller and AHBDMEMmodules, using the AHB master interface of this module
connected to the AHBsub bus. Once the transfers are complete (as indicated by the
rf_store_done and rf_req_done signals), the mode changes back to IDLE mode.

The RF_DATA_STORE mode copies received packet data from the RFcontroller

module and writes it to the data memory. This involves two AHB transfers. The
�rst is to read the packet data from the RFCONTROLLER_REG__RX_DATA_DMA register
on the RFcontrollermodule. The second is to write the packet data to the AHBDMEM
module using the address stored in the RFRxAddr register. The RFRxAddr register
in the code corresponds to the DMA_REG__RF_RX_ADDR memory-mapped register, set
by the Cortex-M0. This address is incremented by 4 by the DMA_V2 module after
every write.

The RF_DATA_GET mode fetches packet data from the data memory and writes it
to the RFcontrollermodule. This involves three AHB transfers. The �rst is to read
the address of the data to fetch from the RFCONTROLLER_REG__TX_DATA_ADDR_DMA

register on the RFcontroller module. The data from this register is stored on the
RFTxAddr register. The second transfer reads the data from the AHBDMEM module
using the address stored in the RFTxAddr register. The data fetched from the mem-
ory is stored on the RFTxData register. The third transfer writes the data stored
on the RFTxData register to the RFCONTROLLER_REG__TX_DATA_DMA register on the
RFcontroller module.

The mode select state machine controls the AHB master interface using the
num_aphase, addr1, addr2, addr3, addr4, and trtype signals. The num_aphase

signal indicates how many AHB transfers (address phases) are needed for that par-
ticular mode (num_aphase == 0 corresponds to 1 transfer, num_aphase == 3 cor-
responds to 4 transfers). The RF_DATA_STORE mode requires two AHB transfers.
The RF_DATA_GET mode requires three AHB transfers; however, four are used as one
transfer is a dummy inserted after the �rst transfer to allow time for it to complete
and update the RFTxAddr register. The addr1 through addr4 signals indicate the

68

addresses for transfers 1 through 4. The trtype signal indicates the transfer direc-
tion (read or write) for each transfer. For example, trtype[0] == 0 indicates that
the �rst transfer is a read, and trtype[3] == 1 indicates that the fourth transfer
is a write.

AHB Master Interface and FSM

The main purpose of this module is carried out using the AHB master interface. This
interface allows the DMA_V2 module to act as an AHB master for the RFcontroller
and AHBDMEM modules. A simple four phase state machine is used in both RF_DATA-

_STORE and RF_DATA_GET modes to handle all AHB transfers.
During the IDLEPHASE state, the AHB master state machine waits for the start

signal from the mode state machine. This signal indicates that the mode has changed
to RF_DATA_STORE or RF_DATA_GET and initiates the series of AHB transfers. This
signal is also used to clear the aphase_count register, which keeps track of the
number of completed address phases in the series of transfer. The state transitions
to ADDRPHASE for the �rst address phase of the AHB transfers.

During the ADDRPHASE state, used for the �rst AHB transfer, the aphase_count
register is 0. The oHADDR output is connected to addr1, and the oHWRITE output is
connected to trtype[0]. The aphase_count register is incremented at the end of
the cycle. Since this is the �rst address phase of a series of back-to-back transfers,
the AHB protocol indicates that the AHB master immediately transitions to the
�rst data phase. There are two states in the AHB master state machine used for
data phases. The �rst is ADDRDATAPHASE, used when the next phase is both a data
phase for the current transfer and an address phase for the next transfer. The second
is DATAPHASE, used when the next phase is only a data phase and there are no more
transfers remaining. The aphase_count signal is compared to num_aphase to see if
there are any more transfers left and choose the next state.

During the ADDRDATAPHASE state, used for pipelined transfers where the address
and data phases overlap, the oHADDR and oHWRITE outputs are connected to one of
the addr and trtype signals according to the value of aphase_count. The oHWDATA
output is connected to either RFTxData or RFRxData, depending on the mode. Since
this phase is a data phase, the AHB protocol indicates that all signals remain valid
until the transfer is complete. Therefore, the AHB master state does not change un-
til oHREADY is asserted. At that time the state transitions to either ADDRDATAPHASE
or DATAPHASE, depending on the value of aphase_count, and aphase_count is in-
cremented.

During the DATAPHASE state, used for the last data phase in a series of AHB
transfers, the oHWDATA output is connected to either RFTxData or RFRxData, de-
pending on the mode. Since this phase is a data phase, the AHB protocol indicates
that all signals remain valid until the transfer is complete. Therefore, the AHB
master state does not change until oHREADY is asserted. At that time the state tran-
sitions to IDLEPHASE, the rf_store_done or rf_req_done signal is asserted, and
the aphase_count register is cleared.

RF Data and Address State Registers

The RFTxAddr register holds the address of packet data to be fetched from data
memory for transmission. This register is updated by the DMA_V2 module during

69

the RF_DATA_GET mode before every fetch.
The RFTxData register holds the packet data fetched from data memory for a

transmission. This register is updated by the DMA_V2 module during the RF_DATA-
_GET mode after every fetch.

The RFRxAddr register holds the address where the next word of received packet
data is stored in the data memory. This register must �rst be written by the Cortex-
M0 (using the DMA_REG__RF_RX_ADDR memory-mapped register) to the beginning of
a section of memory dedicated to received packet data. This register is then updated
by the DMA_V2 module during the RF_DATA_STORE mode after each memory write.

The RFRxData register holds the received packet data to be stored in the data
memory. This register is updated by the DMA_V2 module during the RF_DATA_STORE
mode before every memory write.

Registers updated after AHB transfers are controlled using individual write en-
able signal. These write enable signals depend on the mode (RF_DATA_STORE or
RF_DATA_GET), the phase of the AHB master interface (the phase must be either
ADDRDATAPHASE or DATAPHASE), the number of transfers indicated by aphase_count

(since RFTxAddr is updated after the �rst address phase, during the �rst data phase,
and RFTxData is updated after the third address phase, during the third data phase),
and if the slave has completed the transfer (indicated by the oHREADY input). The
inputs to the RFTxAddr, RFTxData, and RFRxData registers are connected to the
oHRDATA input. The input to the RFRxAddr is connected to either the HWDATA input
(for writes from the Cortex-M0) or an adder (to increment its value by 4).

3.24.4 Register Interface

Receive Data Address Register

The DMA_REG__RF_RX_ADDR register holds the 32-bit address where the next 32-bit
word of received packet data is stored in the data memory. The address in this reg-
ister must be word-aligned. In order to store the largest possible packet (127 bytes)
with three additional bytes for the packet length and CRC, this address must refer
to a location within a continuous, word-aligned section of data memory designated
in the software, with a length of at least 130 bytes. This module automatically in-
crements this address after every write, and continues to write to every subsequent
address unless this register is set to another value by the Cortex-M0. To avoid
overwriting other sections of memory, this register must be updated with the �rst
address of the allocated section of memory before listening for an incoming packet.

70

Register Descriptions

Register 3.3: DMA_REG__RF_RX_ADDR (0x41000014)

R
F_
R
X
_
A
D
D
R

0 0

31 0

Reset

RF_RX_ADDR Address in data memory where received packet data is stored.

3.25 RFcontroller

3.25.1 Description

This module is the interface between the Single Chip Mote digital system and the
radio circuit. This module is responsible for both transmitting (TX) and receiving
(RX) packets using the IEEE 802.15.4 standard [15]. This requires several sub-
blocks including: the mode select state machine to choose between TX and RX, a
TX state machine to assemble packets, an RX state machine to store received pack-
ets in memory, a spreader to convert packet data into single bits for transmission,
a correlator to detect received packets, a despreader to convert received bits into
packet data, and two FIFOs to hold TX/RX packet data before transmission/stor-
age. The RFcontroller module has memory-mapped registers to control the radio
by triggering certain events. The RFTIMER module also sends triggers to the radio
(see section 3.35 for more details). The RFcontroller module also generates inter-
rupts to the Cortex-M0 and the RFTIMER module, used to indicate when the radio
has �nished executing particular tasks. This module relies on the DMA_V2 module
to fetch TX packet data from memory, and store RX packet data to memory (see
section 3.24 for more details).

3.25.2 Input/Output Ports and Parameters

HCLK Input system clock.

HRESETn Input reset.

HSEL Slave select input.

HWRITE Write select input.

HTRANS[1] Transfer type input.

HADDR[31:0] Address input.

HWDATA[31:0] Write data input.

HRDATA[31:0] Read data output.

71

HREADY Transfer �nished input. This input indicates that the previous transfer on
the bus has �nished and that address phase signals must be latched.

HREADYOUT Transfer �nished output.

tx_clk Input clock for transmitting data to the radio circuit.

tx_dout Output data sent to the radio circuit for transmission.

rx_clk Input clock aligned to data received by radio circuit.

rx_din Input data received from radio circuit transmission.

rx_clk_en Clock enable output for rx_clk. This is needed because rx_clk comes
from a shared input on the FPGA and must be disabled when it is not needed
to prevent any unexpected behavior.

rf_data_req Output to the DMA_V2 module requesting data from the data memory
for packet transmission.

rf_data_store Output to the DMA_V2 module requesting that received packet data
is written to the data memory.

tx_load_rftimer Input from the RFTIMER module for the TX_LOAD trigger.

tx_send_rftimer Input from the RFTIMER module for the TX_SEND trigger.

rx_start_rftimer Input from the RFTIMER module for the RX_START trigger.

rx_stop_rftimer Input from the RFTIMER module for the RX_STOP trigger.

tx_load_done_pulse Output to the RFTIMER module for the TX_LOAD_DONE inter-
rupt.

tx_sfd_done_pulse Output to the RFTIMERmodule for the TX_SFD_DONE interrupt.

tx_send_done_pulse Output to the RFTIMER module for the TX_SEND_DONE inter-
rupt.

rx_sfd_done_pulse Output to the RFTIMERmodule for the RX_SFD_DONE interrupt.

rx_done_pulse Output to the RFTIMER module for the RX_DONE interrupt.

rf_irq Interrupt output to the Cortex-M0.

CORRELATOR_THRESHOLD Parameter used when scanning the rx_in data stream for
the beginning of a packet. This parameter is passed into the corr_despreader
submodule.

72

Control Registers

RF Circuit

Mode Select FSM

RX
FSM

TX
FSM

RX
FIFO

TX
FIFO

Correlator/
Despreader

Spreader

Figure 3.11: Block diagram overview of the RFcontroller module and its connec-
tions to the radio circuit

3.25.3 Design Details

Figure 3.11 contains a block diagram showing the main parts of the RFcontroller
module and their connections to each other. The three �nite state machines are
implemented in the RFcontroller module. The TX FIFO is implemented in the
tx_fifo2 module (section 3.26), and the RX FIFO is implemented in the rx_fifo
module (section 3.27). The spreader is in the spreader module (section 3.28) and
the correlator/despreader is in the corr_despreader module (section 3.30). The
RF circuit is the radio circuit on the Single Chip Mote.

IEEE 802.15.4 Packets

The radio circuit and RFcontroller module on the Single Chip Mote are designed
to transmit and receive packets compliant with the IEEE 802.15.4 standard [15]. In
particular, the radio circuit and RFcontroller module are responsible for imple-
menting the physical (PHY) layer of the standard. This standard de�nes several
di�erent PHYs which use di�erent frequency bands and modulation schemes. The

73

Single Chip Mote implements the O-QPSK PHY, de�ned in section 10 of the stan-
dard.

The binary-encoded data in the packet is separated into groups of 4-bit symbols,
where 2 symbols is equivalent to a byte. If the data is arranged in bytes then the least
signi�cant bits in a byte [3:0] make up the �rst symbol, and the most signi�cant
bits 7:4 make up the second symbol.

Each packet begins with a preamble, beginning with 8 copies of the 4'b0000

symbol. The preamble is followed by the 8-bit (2 symbol) start-of-frame delimiter
(SFD).

Then follows the length of the packet payload, in bytes. This �eld is 7 bits wide
(for a maximum payload length of 127 bytes), with 1 reserved bit to make it 8 bits
(2 symbols) wide. Next is the payload, with an upper bound of 127 bytes. At the
end of the packet is the 16-bit (4 symbol) cyclic redundancy check (CRC) value of
the packet. Note that the length �eld includes the length of the payload but does
not include the preamble, SFD, length �eld, or CRC.

The binary data is not directly transmitted via the radio circuit. Instead, the
binary data is converted from symbols to a serial bitstream of chips, and the chips
modulate the transceiver on the radio circuit. The RFcontroller module operates
on binary data; the spreader submodule converts symbols to chips for the radio
circuit during transmission, and the corr_despreader submodule converts received
chips into symbols.

For more information, see the IEEE 802.15.4 standard [15]. A copy is also found
in scm-digital/doc/.

Finite State Machine Triggers

This module uses three state machines to perform all of the functions required to
send or receive packets. Both the TX and RX state machines are broken down
into two major steps, each of which are initiated by the Cortex-M0 or the RFTIMER
module via a particular trigger. The Cortex-M0 initiates these steps by setting the
appropriate bit in the RFCONTROLLER_REG__CONTROL register. The RFTIMER module
initiates these steps by asserting one of the rftimer inputs connected to this module.
The four types of triggers are:

TX_LOAD This trigger initiates the process of loading packet data into the TX FIFO
for transmission.

TX_SEND This trigger initiates the process of sending the packet data in the TX
FIFO to the radio circuit. This trigger has no e�ect if the FIFO is not currently
loaded.

RX_START This trigger initiates the process of scanning the input data from the
radio circuit to detect and process an incoming packet.

RX_STOP This trigger stops the process of detecting an incoming packet. This trigger
has no e�ect if an incoming packet is already being processed.

These triggers are the only way for the software on the Cortex-M0 to control the
radio circuit from a high level. All of the details are handled by the state machines
and the DMA_V2 module.

74

IDLE_MODE

RX_MODETX_MODE

!HRESETn

TX_LOAD_M0 ||

TX_LOAD_RFTIMER

(RX_START_M0 || RX_START_RFTIMER) &&

!(TX_LOAD_M0 || TX_LOAD_RFTIMER)

RF_RESET ||

TX_DONE

RF_RESET ||

RX_STOP_M0 ||

RX_STOP_RFTIMER ||

RX_DONE

!(RF_RESET || TX_DONE) !(RF_RESET || RX_STOP_M0 ||

RX_STOP_RFTIMER || RX_DONE)

!(TX_LOAD_M0 || TX_LOAD_RFTIMER ||

RX_START_M0 || RX_START_RFTIMER)

Figure 3.12: Mode select �nite state machine for the RFcontroller module

State Name State Encoding [MSB:LSB]
IDLE_MODE 00

TX_MODE 01

RX_MODE 10

Figure 3.13: State encodings for the RFcontroller mode select FSM

Mode Select Finite State Machine

The mode select state machine shown in Figure 3.12 is used to activate the TX
and RX state machines when sending and receiving packets. The default state is
IDLE_MODE, where the radio is not sending or receiving packets.

The TX_LOAD trigger, which comes from either setting the TX_LOAD bit of the
RFCONTROLLER_REG__CONTROL register or from the RFTIMER module, changes the
state to TX_MODE. When the transmission is �nished, the state changes back to
IDLE_MODE. Setting the RF_RESET bit of the RFCONTROLLER_REG__CONTROL register
forces the state to change back to IDLE_MODE.

The RX_START trigger, which comes from either setting the RX_START bit of the
RFCONTROLLER_REG__CONTROL register or from the RFTIMER module, changes the
state to RX_MODE. When a packet is received, the state changes back to IDLE_MODE. If
there is no incoming packet, then setting the RX_STOP bit of the RFCONTROLLER_REG-
__CONTROL register (or sending the RX_STOP trigger from the RFTIMER module)
changes the state back to IDLE_MODE. RX_STOP does not have an e�ect if the RX
state machine is processing an incoming packet. Setting the RF_RESET bit of the
RFCONTROLLER_REG__CONTROL register forces the state to change back to IDLE_MODE.

If both TX_LOAD and RX_START are triggered at the same time (either from
the RFCONTROLLER_REG__CONTROL register or the RFTIMER module), TX_LOAD takes
precedence.

Figure 3.13 contains the state names and their binary encodings.

TX Finite State Machine

The TX �nite state machine shown in Figure 3.14 performs all of the actions needed
to transmit a packet. The TX FSM is activated when the mode changes to TX_MODE.

75

The FSM transitions through the following states and performs the following actions:

TX_INIT Reset the TX FIFO, spreader module, and synchronizer modules. A
request is sent to the DMA_V2 module for the �rst four bytes of data.

TX_INIT_WAIT Wait for the DMA_V2 module to fetch the �rst four bytes of data.
This also allows time for the FIFO to �nish resetting.

TX_LOAD_PHY Load the ten bytes of PHY layer headers for the packet into the FIFO.
This includes the preamble, start symbol, and packet length.

TX_LOAD_BYTE0/1/2/3 Load byte 0/1/2/3 of the data fetched by the DMA_V2module
into the FIFO.

TX_DMA_WAIT Wait for the DMA_V2 module to fetch the next four bytes of data.

TX_LOAD_CRC0/1 Load byte 0/1 of the CRC into the FIFO.

TX_LOAD_DONE Assert the TX_LOAD_DONE interrupt. Wait for the TX_SEND trigger to
begin transmitting the packet.

TX_FIFO_DRAIN Wait for all of the packet data to be read from the FIFO and
transmitted via the spreader module. The spreader module also asserts the
TX_SFD_DONE interrupt when the last bit of the SFD is sent.

TX_DONE Assert the TX_SEND_DONE interrupt. Reset the TX FIFO, spreader mod-
ule, and synchronizer modules.

If the mode changes to IDLE_MODE prematurely, either from an error or from
RF_RESET, the TX FSM transitions to the TX_DONE state (in order to perform any
necessary cleanup) and then to the default TX_SLEEP state. Figure 3.15 contains the
state names and their binary encodings.

RX Finite State Machine

The RX �nite state machine shown in Figure 3.16 performs all of the actions needed
to listen for and receive a packet. The RX FSM is activated when the mode changes
to RX_MODE. The FSM transitions through the following states and performs the
following actions:

RX_INIT Reset the RX FIFO, corr_despreadermodule, and synchronizer modules.

RX_GET_LEN Wait for the corr_despreader module to detect a packet. Once a
packet has been detected, the corr_despreader module provides the packet
length and loads the packet data into the FIFO. The corr_despreadermodule
also asserts the RX_SFD_DONE interrupt when a packet is detected.

RX_GET_BYTE0/1/2/3 Read byte 0/1/2/3 from the FIFO.

RX_DMA_WAIT Wait for the DMA_V2 module to �nish storing the previous four bytes
in memory.

RX_DATA_STORE Signal the DMA_V2module to store the current four bytes in memory.

76

TX_SLEEP

TX_INIT

TX_INIT_WAIT

TX_LOAD_PHY

TX_LOAD_BYTE0

TX_LOAD_BYTE1

TX_LOAD_BYTE2

TX_LOAD_BYTE3

TX_LOAD_CRC0

TX_LOAD_CRC1

TX_DMA_WAIT

TX_LOAD_DONE

TX_FIFO_DRAIN

TX_DONE

!HRESETn mode != TX_MODE

mode == TX_MODE

!dma_done

dma_done !load_phy_done

load_phy_done

byte_count != 0

byte_count != 0

dma_done

!dma_done

byte_count

== 0

byte_count

== 0

byte_count

== 0

byte_count

== 0

TX_SEND

!TX_SEND

!send_done

send_done

Loading data
Into FIFO

Sending data
In FIFO

↑IDLE Mode
↓TX Mode

byte_count != 0

byte_count != 0

Figure 3.14: TX �nite state machine for the RFcontroller module

77

State Name State Encoding [MSB:LSB]
TX_SLEEP 0000

TX_INIT 0011

TX_INIT_WAIT 0010

TX_LOAD_PHY 0110

TX_LOAD_BYTE0 0111

TX_LOAD_BYTE1 0101

TX_LOAD_BYTE2 1100

TX_LOAD_BYTE3 1101

TX_DMA_WAIT 1111

TX_LOAD_CRC0 0100

TX_LOAD_CRC1 1110

TX_LOAD_DONE 1010

TX_FIFO_DRAIN 1000

TX_DONE 0001

Figure 3.15: State encodings for the RFcontroller TX FSM

RX_DMA_WAIT2 Wait for the DMA_V2 module to �nish storying the last bytes of the
packet in memory.

RX_CRC_CHECK Check if the packet's CRC is correct.

RX_DONE : Send the RX_DONE interrupt. Reset the RX FIFO, corr_despreader
module, and synchronizer modules.

The RX �nite state machine writes the packet data in the FIFO to the memory
in the order that each byte is received. Preceding the packet data in memory is the
length of the packet itself. Since the DMA_V2 module writes one word (four bytes) at
a time to memory, the packet length is the least signi�cant byte of the �rst word, and
the rest of the packet data follows. This is accomplished by having the RX �nite
state machine transition to the RX_GET_BYTE1 state (rather than RX_GET_BYTE0)
when reading �rst byte of the packet data out of the RX FIFO. The last two bytes
in the RX FIFO contain the CRC value of the packet, and this is also stored in
memory after the packet data.

If the mode changes to IDLE_MODE prematurely, either from an error or from
RF_RESET, the RX FSM transitions to the RX_DONE state (in order to perform any
necessary cleanup) and then to the default RX_SLEEP state. Figure 3.17 contains the
state names and their binary encodings.

TX FIFO and Spreader

The TX FIFO (found in the tx_fifo2 module) stores an entire packet, including
headers and CRC, while it is waiting to be transmitted. The TX_LOAD trigger enables
the �rst part of the TX FSM. This part assembles the packet headers, packet data,
CRC, and loads it all into the TX FIFO. The TX_SEND trigger enables the second
part of the TX FSM and the spreader module. This module reads the data out of
the TX FIFO and encodes it into a sequence of chips that modulate the transceiver
in the radio circuit to send the packet. Both of these modules are controlled by

78

RX_SLEEP

RX_INIT

RX_GET_LEN

RX_GET_BYTE0

RX_GET_BYTE1

RX_GET_BYTE2

RX_GET_BYTE3

RX_DMA_WAIT

RX_DATA_STORE

RX_DMA_WAIT2

RX_CRC_CHECK

RX_DONE

!HRESETn

↑IDLE Mode
↓RX Mode

mode != RX_MODE

mode == RX_MODE

!packet_detected

packet_detected

* length_w_crc = packet_length + 2 - 1

** packet_done0 = (byte_count == length_w_crc*)

*** papcket_done1 = (byte_count > length_w_crc*)

!packet_done0**

!packet_done0**

!packet_done0**

packet_done0**

packet_done0**

packet_done0**

packet_done1***
!packet_done1***

dma_done

!dma_done

dma_done

!dma_done

Waiting For
A Packet

Storing Packet
In Memory

Figure 3.16: RX �nite state machine for the RFcontroller module

79

State Name State Encoding [MSB:LSB]
RX_SLEEP 0000

RX_INIT 0011

RX_GET_LEN 0010

RX_GET_BYTE0 1111

RX_GET_BYTE1 0111

RX_GET_BYTE2 0110

RX_GET_BYTE3 0100

RX_DMA_WAIT 0101

RX_DATA_STORE 1100

RX_DMA_WAIT2 1101

RX_CRC_CHECK 1110

RX_DONE 0001

Figure 3.17: State encodings for the RFcontroller RX FSM

the TX FSM. See section 3.26 for more information on the tx_fifo2 module and
section 3.28 for more information on the spreader module.

RX FIFO and Correlator/Despreader

The RX FIFO (found in the rx_fifo module) temporarily stores all received packet
data and CRC after being decoded by thecorr_despreadermodule and before being
stored into memory. The RX_START trigger enables the RX FSM and also enables
the corr_despreader module. This submodule listens to the incoming chips from
the radio circuit, and detects the SFD of a packet. Once this has been found, the
corr_despreader decodes the incoming chips back into binary data and stores it
into the RX FIFO. At the same time, the RX FSM reads data out of the RX FIFO
and stores it into memory. Both the RX FIFO and the corr_despreader module
are controlled by the RX FSM. See section 3.27 for more information on the rx_fifo
module and section 3.30 for more information on the corr_despreader module.

Clocking

The RFcontroller module requires three separate clock domains in order to prop-
erly interface with the radio circuit. This is because the system clock (HCLK) used
by the Cortex-M0 and all of the digital peripherals runs at 5MHz, and the radio
circuit runs at 2MHz. The Single Chip Mote has a 2MHz source for transmitting
packets called CLK_TX in the top module and connected to the tx_clk input to the
RFcontroller module. The Single Chip Mote also has a separate 2MHz clock for
receiving packets called CLK_RX in the top module and connected to the rx_clk

input of the RFcontroller module. The RX clock comes from an analog circuit on
the Single Chip Mote; this circuit generates a clock that is aligned with the incoming
RX data.

Inside the RFcontroller module the control registers and the �nite state ma-
chines use HCLK. The spreader module uses tx_clk and the corr_despreader

module uses rx_clk. The TX FIFO and RX FIFO are designed to be able to syn-
chronize between separate clock domains and any additional cross-domain signals
are properly synchronized using the bit_sync and bus_sync modules.

80

DMA Interface

The RFcontroller module relies on the DMA_V2 module to transfer packet data to
and from the data memory. The DMA_V2 module is capable of reading and writing
to the RFcontroller via the AHB bus. This is because the DMA_V2 module has an
AHB master interface, and this interface shares the AHBsub bus with the Cortex-
M0. Both the DMA_V2 module and the Cortex-M0 are AHB masters to the two AHB
slaves on this shared bus: the RFcontroller module and the AHBDMEM module. The
RFcontroller has two outputs connected directly to the DMA_V2 to send requests
for data transfers over the AHB.

The rf_data_req output requests data from the memory for packet transmis-
sion. This output port is connected to the txdatareq register in the RFcontroller
module. The txdatareq register is set by the TX FSM when it is time to fetch more
data for transmission. The DMA_V2module reads the RFCONTROLLER_REG__TX_DATA-
_ADDR_DMA register to �nd the address of the data to fetch. Reading this register also
clears the txdatareq register, as this read indicates that the DMA_V2 is servicing the
request. The TX FSM waits for the DMA_V2 to write to the RFCONTROLLER_REG__TX-
_DATA_DMA register with the new packet data. This also causes the address stored
in the RFCONTROLLER_REG__TX_DATA_ADDR_DMA register to increment by 4.

The rf_data_store output requests that the DMA_V2 copy the received packet
data in the RFCONTROLLER_REG__RX_DATA_DMA register to the data memory.

The rf_data_store output is a register set by the RX FSM after the RFCONTROL-
LER_REG__RX_DATA_DMA is updated with new packet data. The rf_data_store reg-
ister is cleared when the DMA_V2 reads from the RFCONTROLLER_REG__RX_DATA_DMA
register, as this read indicates that the DMA_V2 is servicing the request.

In this case the DMA_V2 module, rather than the RFcontroller module, keeps
track of where the new data is written, using the DMA_REG__RF_RX_ADDR register.
The DMA_V2 module increments the address in DMA_REG__RF_RX_ADDR by 4 after
every write.

For more information on the DMA_V2 module, see section 3.24.

Interrupts and Errors

The RFcontroller has one interrupt to the Cortex-M0, as well as a register to
indicate any errors. This single interrupt is a combination of several interrupt and
error sources. This module also has a direct connection to the RFTIMER module to
send interrupts (in the form of a single-cycle pulse) to any of its capture units (see
section 3.35 spec for more details).

The �ve interrupt sources are:

TX_LOAD_DONE The TX FSM �nishes copying packet data into the TX FIFO

TX_SFD_DONE The spreader �nishes transmitting the last bit of the packet's SFD to
the radio circuit

TX_SEND_DONE The TX FSM �nishes transmitting a packet

RX_SFD_DONE The correlator/despreader detects an incoming packet

RX_DONE The RX FSM �nishes receiving an incoming packet and storing the data
into memory

81

The �ve error sources are:

TX_OVERFLOW_ERROR The TX FIFO over�ows

TX_CUTOFF_ERROR The TX FM is reset while a packet is sending

RX_OVERFLOW_ERROR The RX FIFO over�ows

RX_CRC_ERROR The CRC of a received packet is incorrect (the packet data is still
copied into memory)

RX_CUTOFF_ERROR The RX FSM is reset while processing an incoming packet

Each of these interrupt or error sources correspond to a bit in the RFCONTROLLER-
_REG__INT or RFCONTROLLER_REG__ERROR registers. The RFCONTROLLER_REG__INT-
_CONFIG and RFCONTROLLER_REG__ERROR_CONFIG registers contain INT_EN and ER-

ROR_EN bits used to enable or disable each interrupt or error source. An enabled
interrupt source sets the corresponding bit in the RFCONTROLLER_REG__INT register
when the interrupt is triggered. A disabled interrupt source has no impact on the
RFCONTROLLER_REG__INT register. The same applies to the error sources.

The Cortex-M0 interrupt is composed of the bitwise OR of the bits in the
RFCONTROLLER_REG__INT and RFCONTROLLER_REG__ERROR registers, after they are
masked by the INT_MASK and ERROR_MASK bits in the RFCONTROLLER_REG__INT-

_CONFIG and RFCONTROLLER_REG__ERROR_CONFIG registers. A masked bit in the
RFCONTROLLER_REG__INT register means that it can be set but it will not trigger
the Cortex-M0 interrupt. An unmasked bit will trigger the Cortex-M0 interrupt if
it is set in the RFCONTROLLER_REG__INT register. The same applies to the bits in
the RFCONTROLLER_REG__ERROR register.

In addition, each interrupt source is connected to the capture units of the
RFTIMER module. Triggering the interrupt sends a single-cycle pulse to the RFTIMER
module, if that interrupt source is enabled. This is set by the PULSE_EN bits in the
RFCONTROLLER_REG__INT_CONFIG register. Error sources are not connected to the
RFTIMER module

3.25.4 Register Interface

Control Register

The RFCONTROLLER_REG__CONTROL register is a 5-bit register with �elds that trig-
ger parts of the TX and RX state machines. Its �ve bits are TX_LOAD, TX_SEND,
RX_START, RX_STOP, and RF_RESET.

The TX_LOAD bit changes the mode from IDLE_MODE to TX_MODE, and launches
the �rst part of the TX FSM responsible for loading packet data into memory. Once
this is �nished, the TX_SEND bit launches the second part of the TX FSM, responsible
for sending the packet through the radio circuit. After this is �nished, the mode
returns to IDLE_MODE, and the TX state returns to TX_SLEEP. Setting the TX_LOAD
bit has no e�ect when the mode is not IDLE_MODE, and setting the TX_SEND bit
has no e�ect when the FIFO is not loaded (or in other words, the TX state is not
TX_LOAD_DONE).

The RX_START bit changes the mode from IDLE_MODE to RX_MODE, and launches
the �rst part of the RX FSM responsible for listening for new packets. The RX_STOP

82

bit resets the RX state back to RX_SLEEP and changes the mode back to IDLE_MODE,
under the condition that the RFcontroller module is not currently receiving a
packet. Setting the RX_START bit has no e�ect when the mode is not IDLE_MODE,
and setting the RX_STOP bit has no e�ect when the radio is not listening for packets or
is currently receiving a packet (or in other words, the RX state is not RX_GET_LEN).

The RF_RESET bit resets all state machines back to their initial states in case of
an unrecoverable error.

Status Register

The RFCONTROLLER_REG__STATUS register is a 10-bit register containing the current
states of the three state machines. This register is used either to check the progress
of sending/receiving a packet, or to check for any unexpected behavior (such as the
FSM being `stuck' in one state) for debugging purposes. This register contains two
MODE bits for the state of the mode select FSM, four TX_STATE bits for the TX FSM,
and four RX_STATE bits for the RX FSM. The encodings for each state are speci�ed
in Figures 3.13, 3.15, and 3.17, respectively.

TX Data Address and Packet Length

The RFCONTROLLER_REG__TX_DATA_ADDR register is a 32-bit register containing the
start address of the data to be transmitted. The address in this register must be
word-aligned. All of the packet data must be in a continuous, sequential, word-
aligned section of data memory beginning at the address stored in RFCONTROLLER-

_REG__TX_DATA_ADDR.
The RFCONTROLLER_REG__PACK_LEN register is a 7-bit register containing the

length of the data to be transmitted in bytes. The maximum data length, as de�ned
by the IEEE 802.15.4 standard [15] is 127 bytes.

Both the RFCONTROLLER_REG__TX_DATA_ADDR and RFCONTROLLER_REG__PACK-

_LEN registers must be updated before sending a packet to ensure that they point to
the correct location in memory and indicate the correct length of the packet payload;
however, their contents are not modi�ed by the RFcontroller module during its
operation.

RX Data Address

The DMA_REG__RF_RX_ADDR register is not part of the RFcontroller module; how-
ever, it must be updated before listening for a packet. This 32-bit register in the
DMA_V2 module contains the starting address where received data is stored (see sec-
tion 3.24 for more details). This address must refer to a continuous, word-aligned sec-
tion of data memory designated in the software, with a length of at least 130 bytes, in
order to be able to store the largest possible packet (127 bytes) and three additional
bytes for the packet length and CRC. The address stored in DMA_REG__RF_RX_ADDR

is modi�ed by the DMA_V2 module while receiving a packet, and therefore must be
set back to the correct value before listening for another packet.

DMA Exclusive Registers

The following registers are part of the RFcontroller module, but are not meant to
be accessed by the software running on the Cortex-M0. These registers are used by

83

the DMA_V2 module to transfer packet data between the RFcontroller module and
the data memory.

The RFCONTROLLER_REG__TX_DATA_ADDR_DMA register is a 32-bit register con-
taining the address of the next 4 bytes of data the DMA_V2 module must fetch for a
packet transmission. The TX FSM copies the contents of the RFCONTROLLER_REG-

__TX_DATA_ADDR register into this register before loading the TX FIFO, and incre-
ments the contents of this register by 4 every time the DMA_V2 fetches new data.

The RFCONTROLLER_REG__TX_DATA_DMA register is a 32-bit register written by
the DMA_V2 module with the data fetched for a packet transmission. The contents
of this register are copied into the TX FIFO.

The RFCONTROLLER_REG__RX_DATA_DMA register is a 32-bit register containing
the received packet data that the DMA_V2 copies into the FIFO. The RX FSM updates
this value with new packet data and the DMA_V2module reads this register and copies
the contents to the data memory.

Interrupt and Error Registers

The RFCONTROLLER_REG__INT register is a 5-bit register indicating any interrupts
from the RFcontroller module. The �ve bits correspond to the �ve types of inter-
rupts: TX_LOAD_DONE, TX_SFD_DONE, TX_SEND_DONE, RX_SFD_DONE, and RX_DONE.
These bits are set if the interrupt is triggered and is enabled in the RFCONTROLLER-
_REG__INT_CONFIG register. These bits are cleared by writing to the RFCONTROLLER-
_REG__INT_CLEAR register.

The RFCONTROLLER_REG__INT_CONFIG register is a 15-bit register containing the
con�guration �ags for each interrupt source. The �ve INT_EN bits enable or disable
each interrupt source. An enabled interrupt source sets its corresponding bit in
RFCONTROLLER_REG__INT when it is triggered, and a disabled interrupt source has
no e�ect. The �ve PULSE_EN bits enable or disable the pulse sent to the RFTIMER

module for each interrupt source. An interrupt with a set PULSE_EN bit sends a
single-cycle pulse to the RFTIMER module when it is triggered. The �ve INT_MASK

bits determine whether or not the corresponding bit in RFCONTROLLER_REG__INT

triggers the Cortex-M0 interrupt. An interrupt source with a set INT_EN bit and a
set INT_MASK bit will set the corresponding bit in RFCONTROLLER_REG__INT when
it triggers, but it will not trigger an interrupt to the Cortex-M0. Clearing the
INT_MASK bit while the corresponding bit in RFCONTROLLER_REG__INT is still set
triggers a Cortex-M0 interrupt.

The RFCONTROLLER_REG__INT_CLEAR register is a 5-bit register that clears the
bits in RFCONTROLLER_REG__INT. Setting any bit in this register to 1 clears the cor-
responding bit in RFCONTROLLER_REG__INT. Any unmasked bits set in the RFCONTR-
OLLER_REG__INT register trigger the Cortex-M0 interrupt and a call to the interrupt
service routine. The interrupt service routine must clear any unmasked bits (or mask
them); otherwise, the ISR will execute again until all unmasked bits are cleared.

The RFCONTROLLER_REG__ERROR register is a 5-bit register indicating any errors
from the RFcontroller module. The �ve bits correspond to the �ve types of errors:
TX_OVERFLOW_ERROR, TX_CUTOFF_ERROR, RX_OVERFLOW_ERROR, RX_CRC_ERROR, and
RX_CUTOFF_ERROR. These bits are set if the error is triggered and is enabled in the
RFCONTROLLER_REG__ERROR_CONFIG register. These bits are cleared by writing to
the RFCONTROLLER_REG__ERROR_CLEAR register.

84

The RFCONTROLLER_REG__ERROR_CONFIG register is a 10-bit register containing
the con�guration �ags for each error source. The �ve ERROR_EN bits enable or
disable each error source. An enabled error source sets its corresponding bit in
RFCONTROLLER_REG__ERROR when it is triggered, and a disabled error source has no
e�ect. The �ve ERROR_MASK bits determine whether or not the corresponding bit
in RFCONTROLLER_REG__ERROR triggers the Cortex-M0 interrupt. An error source
with a set ERROR_EN bit and a set ERROR_MASK bit will set the corresponding bit in
RFCONTROLLER_REG__ERROR when it triggers, but this will not trigger an interrupt
to the Cortex-M0. Clearing the ERROR_MASK bit while the corresponding bit in
RFCONTROLLER_REG__ERROR is still set triggers a Cortex-M0 interrupt.

The RFCONTROLLER_REG__ERROR_CLEAR register is a 5-bit register that clears
the bits in RFCONTROLLER_REG__ERROR. Setting any bit in this register to 1 clears
the corresponding bit in RFCONTROLLER_REG__ERROR. Any unmasked bits set in the
RFCONTROLLER_REG__ERROR register trigger the Cortex-M0 interrupt and a call to
the interrupt service routine. The interrupt service routine must clear any unmasked
bits (or mask them); otherwise, the ISR will execute again until all unmasked bits
are cleared.

Register Descriptions

Register 3.4: RFCONTROLLER_REG__CONTROL (0x40000000)

R
F_
R
ES
ET

4

R
X
_
ST
O
P

3

R
X
_
ST
A
RT

2

T
X
_
SE
N
D

1

T
X
_
LO
A
D

0

TX_LOAD (Write-Only) Triggers the TX state machine to load packet data into TX FIFO. 0
= no load and 1 = load.

TX_SEND (Write-Only) Triggers the TX state machine to send packet data in the TX FIFO.
0 = no send and 1 = send.

RX_START (Write-Only) Triggers the RX state machine to listen for incoming packets. 0 =
no start and 1 = start.

RX_STOP (Write-Only) Stops the RX state machine from listening to incoming packets. 0 =
no stop and 1 = stop.

RF_RESET (Write-Only) Resets the mode select, TX, and RX state machines. 0 = no reset
and 1 = reset.

85

Register 3.5: RFCONTROLLER_REG__STATUS (0x40000004)

R
X
_
ST
AT
E

0 0 0 0

9 6

T
X
_
ST
AT
E

0 0 0 0

5 2

M
O
D
E

0 0

1 0

Reset

MODE (Read-Only) State of the mode select state machine. See Figure 3.13 for state encodings.

TX_MODE (Read-Only) State of the TX state machine. See Figure 3.15 for state encodings.

RX_MODE (Read-Only) State of the RX state machine. See Figure 3.17 for state encodings.

Register 3.6: RFCONTROLLER_REG__TX_DATA_ADDR (0x40000008)

T
X
_
D
AT
A
_
A
D
D
R

0 0

31 0

Reset

TX_DATA_ADDR Address pointing to the beginning of the packet data to transmit.

Register 3.7: RFCONTROLLER_REG__TX_PACK_LEN (0x4000000C)

T
X
_
PA
C
K
_
LE
N

0 0 0 0 0 0 0

6 0

Reset

TX_PACK_LEN Length of the packet to transmit.

86

Register 3.8: RFCONTROLLER_REG__INT (0x40000010)

R
X
_
D
O
N
E_
IN
T

0

4

R
X
_
SF
D
_
D
O
N
E_
IN
T

0

3

T
X
_
SE
N
D
_
D
O
N
E_
IN
T

0

2

T
X
_
SF
D
_
D
O
N
E_
IN
T

0

1

T
X
_
LO
A
D
_
D
O
N
E_
IN
T

0

0

Reset

TX_LOAD_DONE_INT (Read-Only) TX load done interrupt �ag. 0 = no interrupt pend-
ing and 1 = interrupt pending.

TX_SFD_DONE_INT (Read-Only) TX SFD transmission done interrupt �ag. 0 = no in-
terrupt pending and 1 = interrupt pending.

TX_SEND_DONE_INT (Read-Only) TX packet transmission done interrupt �ag. 0 = no
interrupt pending and 1 = interrupt pending.

RX_SFD_DONE_INT (Read-Only) RX SFD detection interrupt �ag. 0 = no interrupt
pending and 1 = interrupt pending.

RX_DONE_INT (Read-Only) RX packet stored interrupt �ag. 0 = no interrupt pending and
1 = interrupt pending.

87

Register 3.9: RFCONTROLLER_REG__INT_CONFIG (0x40000014)

R
X
_
D
O
N
E_
IN
T
_
M
A
SK

0

14

R
X
_
SF
D
_
D
O
N
E_
IN
T
_
M
A
SK

0

13

T
X
_
SE
N
D
_
D
O
N
E_
IN
T
_
M
A
SK

0

12

T
X
_
SF
D
_
D
O
N
E_
IN
T
_
M
A
SK

0

11

T
X
_
LO
A
D
_
D
O
N
E_
IN
T
_
M
A
SK

0

10

R
X
_
D
O
N
E_
R
FT
IM
ER
_
PU
LS
E_
EN

0

9

R
X
_
SF
D
_
D
O
N
E_
R
FT
IM
ER
_
PU
LS
E_
EN

0

8

T
X
_
SE
N
D
_
D
O
N
E_
R
FT
IM
ER
_
PU
LS
E_
EN

0

7

T
X
_
SF
D
_
D
O
N
E_
R
FT
IM
ER
_
PU
LS
E_
EN

0

6

T
X
_
LO
A
D
_
D
O
N
E_
R
FT
IM
ER
_
PU
LS
E_
EN

0

5

R
X
_
D
O
N
E_
IN
T
_
EN

0

4

R
X
_
SF
D
_
D
O
N
E_
IN
T
_
EN

0

3

T
X
_
SE
N
D
_
D
O
N
E_
IN
T
_
EN

0

2

T
X
_
SF
D
_
D
O
N
E_
IN
T
_
EN

0

1

T
X
_
LO
A
D
_
D
O
N
E_
IN
T
_
EN

0

0

Reset

TX_LOAD_DONE_INT_EN TX load done interrupt enable. 0 = disabled and 1 = en-
abled.

TX_SFD_DONE_INT_EN TX SFD transmission done interrupt enable. 0 = disabled and
1 = enabled.

TX_SEND_DONE_INT_EN TX packet transmission done interrupt enable. 0 = disabled
and 1 = enabled.

RX_SFD_DONE_INT_EN RX SFD detection interrupt enable. 0 = disabled and 1 =
enabled.

RX_DONE_INT_EN RX packet stored interrupt enable. 0 = disabled and 1 = enabled.

TX_LOAD_DONE_RFTIMER_PULSE_EN TX load done output pulse enable. 0 =
disabled and 1 = enabled.

TX_SFD_DONE_RFTIMER_PULSE_EN TX SFD transmission done output pulse en-
able. 0 = disabled and 1 = enabled.

TX_SEND_DONE_RFTIMER_PULSE_EN TX packet transmission done output
pulse enable. 0 = disabled and 1 = enabled.

RX_SFD_DONE_RFTIMER_PULSE_EN RX SFD detection output pulse enable. 0
= disabled and 1 = enabled.

RX_DONE_RFTIMER_PULSE_EN RX packet stored output pulse enable. 0 = disabled
and 1 = enabled.

TX_LOAD_DONE_INT_MASK TX load done interrupt mask. 0 = not masked and 1 =
masked.

TX_SFD_DONE_INT_MASK TX SFD transmission done interrupt mask. 0 = not
masked and 1 = masked.

TX_SEND_DONE_INT_MASK TX packet transmission done interrupt mask. 0 = not
masked and 1 = masked.

RX_SFD_DONE_INT_MASK RX SFD detection interrupt mask. 0 = not masked and 1
= masked.

RX_DONE_INT_MASK RX packet stored interrupt mask. 0 = not masked and 1 =
masked.

88

Register 3.10: RFCONTROLLER_REG__INT_CLEAR (0x40000018)

R
X
_
D
O
N
E_
IN
T
_
C
LE
A
R

0

4

R
X
_
SF
D
_
D
O
N
E_
IN
T
_
C
LE
A
R

0

3

T
X
_
SE
N
D
_
D
O
N
E_
IN
T
_
C
LE
A
R

0

2

T
X
_
SF
D
_
D
O
N
E_
IN
T
_
C
LE
A
R

0

1

T
X
_
LO
A
D
_
D
O
N
E_
IN
T
_
C
LE
A
R

0

0

Reset

TX_LOAD_DONE_INT_CLEAR (Write-Only) TX load done interrupt �ag clear. 0 =
�ag unchanged and 1 = �ag cleared.

TX_SFD_DONE_INT_CLEAR (Write-Only) TX SFD transmission done interrupt �ag
clear. 0 = �ag unchanged and 1 = �ag cleared.

TX_SEND_DONE_INT_CLEAR (Write-Only) TX packet transmission done interrupt
�ag clear. 0 = �ag unchanged and 1 = �ag cleared.

RX_SFD_DONE_INT_CLEAR (Write-Only) RX SFD detection interrupt �ag clear. 0
= �ag unchanged and 1 = �ag cleared.

RX_DONE_INT_CLEAR (Write-Only) RX packet stored interrupt �ag clear. 0 = �ag
unchanged and 1 = �ag cleared.

Register 3.11: RFCONTROLLER_REG__ERROR (0x4000001C)

R
X
_
C
U
T
O
FF
_
ER
R
O
R

0

4

R
X
_
C
R
C
_
ER
R
O
R

0

3

R
X
_
O
V
ER
FL
O
W
_
ER
R
O
R

0

2

T
X
_
C
U
T
O
FF
_
ER
R
O
R

0

1

T
X
_
O
V
ER
FL
O
W
_
ER
R
O
R

0

0

Reset

TX_OVERFLOW_ERROR (Read-Only) TX over�ow error �ag. 0 = no error pending and
1 = error pending.

TX_CUTOFF_ERROR (Read-Only) TX cuto� error �ag. 0 = no error pending and 1 =
error pending.

RX_OVERFLOW_ERROR (Read-Only) RX over�ow error �ag. 0 = no error pending and
1 = error pending.

RX_CRC_ERROR (Read-Only) RX CRC error �ag. 0 = no error pending and 1 = error
pending.

RX_CUTOFF_ERROR (Read-Only) RX cuto� error �ag. 0 = no error pending and 1 =
error pending.

89

Register 3.12: RFCONTROLLER_REG__ERROR_CONFIG (0x40000020)

R
X
_
C
U
T
O
FF
_
ER
R
O
R
_
M
A
SK

0

9

R
X
_
C
R
C
_
ER
R
O
R
_
M
A
SK

0

8

R
X
_
O
V
ER
FL
O
W
_
ER
R
O
R
_
M
A
SK

0

7

T
X
_
C
U
T
O
FF
_
ER
R
O
R
_
M
A
SK

0

6

T
X
_
O
V
ER
FL
O
W
_
ER
R
O
R
_
M
A
SK

0

5

R
X
_
C
U
T
O
FF
_
ER
R
O
R
_
EN

0

4

R
X
_
C
R
C
_
ER
R
O
R
_
EN

0

3

R
X
_
O
V
ER
FL
O
W
_
ER
R
O
R
_
EN

0

2

T
X
_
C
U
T
O
FF
_
ER
R
O
R
_
EN

0

1

T
X
_
O
V
ER
FL
O
W
_
ER
R
O
R
_
EN

0

0

Reset

TX_OVERFLOW_ERROR_EN TX over�ow error enable. 0 = disabled and 1 = enabled.

TX_CUTOFF_ERROR_EN TX cuto� error enable. 0 = disabled and 1 = enabled.

RX_OVERFLOW_ERROR_EN RX over�ow error enable. 0 = disabled and 1 = enabled.

RX_CRC_ERROR_EN RX CRC error enable. 0 = disabled and 1 = enabled.

RX_CUTOFF_ERROR_EN RX cuto� error enable. 0 = disabled and 1 = enabled.

TX_OVERFLOW_ERROR_MASK TX over�ow error mask. 0 = not masked and 1 =
masked.

TX_CUTOFF_ERROR_MASK TX cuto� error mask. 0 = not masked and 1 = masked.

RX_OVERFLOW_ERROR_MASK RX over�ow error mask. 0 = not masked and 1 =
masked.

RX_CRC_ERROR_MASK RX CRC error mask. 0 = not masked and 1 = masked.

RX_CUTOFF_ERROR_MASK RX cuto� error mask. 0 = not masked and 1 = masked.

90

Register 3.13: RFCONTROLLER_REG__ERROR_CLEAR (0x40000024)

R
X
_
C
U
T
O
FF
_
ER
R
O
R
_
C
LE
A
R

0

4

R
X
_
C
R
C
_
ER
R
O
R
_
C
LE
A
R

0

3

R
X
_
O
V
ER
FL
O
W
_
ER
R
O
R
_
C
LE
A
R

0

2

T
X
_
C
U
T
O
FF
_
ER
R
O
R
_
C
LE
A
R

0

1

T
X
_
O
V
ER
FL
O
W
_
ER
R
O
R
_
C
LE
A
R

0

0

Reset

TX_OVERFLOW_ERROR_CLEAR (Write-Only) TX over�ow error �ag clear. 0 = �ag
unchanged and 1 = �ag cleared.

TX_CUTOFF_ERROR_CLEAR (Write-Only) TX cuto� error �ag clear. 0 = �ag un-
changed and 1 = �ag cleared.

RX_OVERFLOW_ERROR_CLEAR (Write-Only) RX over�ow error �ag clear. 0 = �ag
unchanged and 1 = �ag cleared.

RX_CRC_ERROR_CLEAR (Write-Only) RX CRC error �ag clear. 0 = �ag unchanged
and 1 = �ag cleared.

RX_CUTOFF_ERROR_CLEAR (Write-Only) RX cuto� error �ag clear. 0 = �ag un-
changed and 1 = �ag cleared.

Register 3.14: RFCONTROLLER_REG__TX_DATA_DMA (0x40000028)

T
X
_
D
AT
A
_
D
M
A

0 0

31 0

Reset

TX_DATA_DMA (Read-only) Address used by the DMA to fetch data for packet transmis-
sions. THIS REGISTER IS EXCLUSIVELY FOR USE BY THE DMA.

91

Register 3.15: RFCONTROLLER_REG__TX_DATA_ADDR_DMA

(0x4000002C)

T
X
_
D
AT
A
_
A
D
D
R
_
D
M
A

0 0

31 0

Reset

TX_DATA_ADDR_DMA Packet data for transmission, written by the DMA. Address used
by the DMA to fetch data for packet transmissions. THIS REGISTER IS EXCLUSIVELY
FOR USE BY THE DMA.

Register 3.16: RFCONTROLLER_REG__RX_DATA_DMA (0x40000030)

R
X
_
D
AT
A
_
D
M
A

0 0

31 0

Reset

RX_DATA_DMA (Read-only) Received packet data, read and stored in the data memory by
the DMA. THIS REGISTER IS EXCLUSIVELY FOR USE BY THE DMA.

3.26 tx_�fo2

3.26.1 Description

This module is an asynchronous, asymmetric FIFO designed to store packet data
waiting to be transmitted in the RFcontroller module. This module is asyn-
chronous since it has two di�erent clock inputs for reading (2MHz CLK_TX) and
writing (5MHz HCLK), and is asymmetric since the read data width (4 bits) and
write data width (8 bits) are di�erent. This FIFO stores up to 265 bytes and is
large enough to store a transmitted packet at its maximum size. The design is
based on the one described in [8], with additional modi�cations to deal with the
asymmetric read and write data widths.

3.26.2 Input/Output Ports

reset_n Input reset.

wr_clk Input write clock. The write data and write enable signals must be syn-
chronized to this clock. The full �ag is synchronized to this clock.

92

wr_en Write enable input. When this input is 1, the data on wr_data is written
into the FIFO.

wr_data[7:0] Write data input. This is the data written into the FIFO.

wr_full FIFO full output. This indicates that the FIFO is full and cannot accept
any more data. Any attempts to write into a full FIFO will fail and the data
will be lost.

rd_clk Input read clock. The read data and read enable signals must be synchro-
nized to this clock. The empty �ag is synchronized to this clock.

rd_en Read enable input. When this input is 1, the next value in the FIFO is read
to the rd_data output on the next cycle.

rd_data[3:0] Read data output. This is the data read from the FIFO.

rd_empty FIFO empty output. This indicates that the FIFO is empty and is not
able to read additional data. Any attempts to read from an empty FIFO will
fail and invalid data will be present on rd_data.

3.26.3 Design Details

Original Design

The original implementation in [8] uses an asynchronous read and write pointer
comparison technique to reduce the amount of synchronization �ip-�ops in the de-
sign. Another side-e�ect of this technique is the improved temporal accuracy of the
rd_empty and wr_full outputs.

The traditional asynchronous FIFO design requires a shift register to sample the
read pointer with the write clock, and another shift register to sample the write
pointer with the read clock. A FIFO using 8-bit pointers and a shift register depth
of 3 (since greater depths reduce the chances of synchronization errors), requires 48
�ip-�ops. There is also at least a 3 cycle delay before the full or empty signals to
de-assert. In contrast, the method used in [8] requires only 5 �ip-�ops and some
extra combinational logic.

This method creates an asynchronous empty signal, where its rising edge aligned
to the read clock and its falling edge aligned to the write clock. A simple circuit
containing two �ip-�ops solves this issue and synchronizes both edges to the read
clock. This results in a rd_empty signal that asserts as soon as the FIFO is empty,
and de-asserts on the next read clock edge after the FIFO is not empty. The full
signal has its rising edge aligned to the write clock and its falling edge aligned to the
read clock. The same two-�op circuit synchronizes both edges to the write clock,
and the wr_full signal asserts as soon as the FIFO is full, and de-asserts on the
next write clock edge after the FIFO is not full.

For more information on this FIFO design, see [8]. A copy is found in scm-digital/
doc/.

93

Read Data Order

The original implementation in [8] assumes that the read and write data widths are
the same. However, the RFcontroller modules requires a FIFO with 8-bit writes
and 4-bit reads. For every 8 bits written to the FIFO, the lower 4 bits, [3:0], are
read out of the FIFO �rst, and the upper 4 bits, [7:4], are read out of the FIFO
second.

Pointer Comparison Modi�cations

The original implementation in [8] uses Gray code read and write address pointers
instead of binary-encoded pointers. Using Gray code reduces the chance of compar-
ison and synchronization errors. However, the implementation in tx_fifo2 requires
asymmetric read and write data widths, resulting in di�erent read and write address
pointer sizes. Given that the read data width is half of the write data width, the
read pointer requires one more bit over the write pointer.

Consider the n-bit read pointer rd_addr[n-1:0] and the n-1-bit write pointer,
wr_addr[n-2:0]. If the pointers are binary-encoded, then the FIFO is be full
after a write when rd_addr[n-1:1] == wr_addr[n-2:0],and empty after a read
when rd_addr[n-1:0] == {wr_addr[n-2:0], 1'b0}. The empty comparison fails
when applied to two Gray code pointers of di�erent sizes. This is because the least
signi�cant bit of rd_addr is sometimes 0 after two reads, and sometimes 1 after two
reads. As a Grey code pointer increments, the least signi�cant bit changes according
to the following pattern: 0110 (as opposed to 0101 with a binary pointer). For the
pointers in this design, the problem is �xed by changing {wr_addr[n-2:0], 1'b0}

to {wr_addr[n-2:0], ^wr_addr}.

FIFO Memory Modi�cations

The memory used to store the FIFO data is designed to behave like a synchronous
SRAM with a width of 8 bits and a depth of 256 bits. This SRAM is not instantiated;
however, the syntax used in the Verilog code infers a synchronous SRAM.

The write data width is 8 bits; one word of the RAM is written during every write,
and the write address width of the FIFO matches write address width of the RAM.
The read data width is 4 bits; therefore, the most signi�cant bits (rd_addr[8:1])
of the read address are used to address the 8-bit word in the RAM containing the
desired 4 bits. The least signi�cant bit (rd_addr[0]) is used to determine which set
of 4 bits in the RAM is the correct output.

Grey code pointers further complicate the read handling. As a Grey code pointer
increments, the least signi�cant bit changes according to the following pattern: 0110
(as opposed to 0101 with a binary pointer). Therefore, sometimes rd_addr[0] ==

0 means the lower 4 bits must be read, and sometimes it means the upper 4 bits
must be read. This is determined based on the value of ^rd_addr[8:1].

Over�ow and Under�ow Handling

The original implementation in [8] does not detect or handle over�ows and under-
�ows. This implementation was modi�ed to allow reads only when the FIFO is not
empty (by using rd_en && !rd_empty instead of only rd_en) and writes only when
the FIFO is not full (by using wr_en && !wr_full instead of only wr_full). The

94

asynchronous pointer comparisons allow for the rd_empty output to assert as soon
as the FIFO is empty and the wr_full output to assert as soon as the FIFO is full;
this is required for the prevention of over�ows and under�ows.

3.27 rx_�fo

3.27.1 Description

This module is an asynchronous, asymmetric, �rst word fall through (FWFT) FIFO
designed to received packet data in the RFcontroller module. This module is
asynchronous since it has two di�erent clock inputs for reading (5MHz HCLK) and
writing (2MHz CLK_RX), and is asymmetric since the read data width (8 bits) and
write data width (4 bits) are di�erent. This FIFO stores up to 128 bytes, 2 bytes
smaller than the maximum size of received packet data. However, the RFcontroller
module reads data out of the FIFO as soon as it is written, and therefore it is highly
unlikely that the FIFO will over�ow. The design is based on the one described in
[8], with additional modi�cations to deal with the asymmetric read and write data
widths and the addition of �rst word fall through logic.

3.27.2 Input/Output Ports

reset_n Input reset.

wr_clk Input write clock. The write data and write enable signals must be syn-
chronized to this clock. The full �ag is synchronized to this clock.

wr_en Write enable input. When this input is 1, the data on wr_data is written
into the FIFO.

wr_data[3:0] Write data input. This is the data written into the FIFO.

wr_full FIFO full output. This indicates that the FIFO is full and cannot accept
any more data. Any attempts to write into a full FIFO will fail and the data
will be lost.

rd_clk Input read clock. The read data and read enable signals must be synchro-
nized to this clock. The empty �ag is synchronized to this clock.

rd_en Read enable input. When this input is 1, the next value in the FIFO is read
to the rd_data output on the next cycle.

rd_data[7:0] Read data output. This is the data read from the FIFO.

rd_empty FIFO empty output. This indicates that the FIFO is empty and is not
able to read additional data. Any attempts to read from an empty FIFO will
fail and invalid data will be present on rd_data.

95

3.27.3 Design Details

Original Design

The original implementation in [8] uses an asynchronous read and write pointer
comparison technique to reduce the amount of synchronization �ip-�ops in the de-
sign. Another side-e�ect of this technique is the improved temporal accuracy of the
rd_empty and wr_full outputs.

The traditional asynchronous FIFO design requires a shift register to sample the
read pointer with the write clock, and another shift register to sample the write
pointer with the read clock. A FIFO using 8-bit pointers and a shift register depth
of 3 (since greater depths reduce the chances of synchronization errors), requires 48
�ip-�ops. There is also at least a 3 cycle delay before the full or empty signals to
de-assert. In contrast, the method used in [8] requires only 5 �ip-�ops and some
extra combinational logic.

This method creates an asynchronous empty signal, with its rising edge aligned
to the read clock and its falling edge aligned to the write clock. A simple circuit
containing two �ip-�ops solves this issue and synchronizes both edges to the read
clock. This results in a rd_empty signal that asserts as soon as the FIFO is empty,
and de-asserts on the next read clock edge after the FIFO is not empty. The full
signal has its rising edge aligned to the write clock and its falling edge aligned to the
read clock. The same two-�op circuit synchronizes both edges to the write clock,
and the wr_full signal asserts as soon as the FIFO is full, and de-asserts on the
next write clock edge after the FIFO is not full.

For more information on this FIFO design, see [8]. A copy is found in scm-digital/
doc/.

Write Data Order

The original implementation in [8] assumes that the read and write data widths are
the same. However, the RFcontroller modules requires a FIFO 4-bit writes and
8-bit reads. For every 8 bits read from the FIFO, the lower 4 bits, [3:0], are written
to the FIFO �rst, and the upper 4 bits, [7:4], are written to the FIFO second.

Pointer Comparison Modi�cations

The original implementation in [8] uses Gray code read and write address pointers
instead of binary-encoded pointers. Using Gray code reduces the chance of compar-
ison and synchronization errors. However, the implementation in tx_fifo2 requires
asymmetric read and write data widths, resulting in di�erent read and write address
pointer sizes. Given that the write data width is half of the read data width, the
read pointer requires one less bit than the write pointer.

Consider the n-1-bit read pointer rd_addr[n-2:0] and the n-bit write pointer,
wr_addr[n-1:0]. If the pointers are binary-encoded, then the FIFO is be empty af-
ter a read when rd_addr[n-2:0] == wr_addr[n-1:1], and full after a write when
{rd_addr[n-2:0], 1�b0} == wr_addr[n-1:0]. The full comparison fails when ap-
plied to two Gray code pointers of di�erent sizes. This is because the least signi�cant
bit of wr_addr is sometimes 0 after two writes, and sometimes 1 after two writes.
As a Grey code pointer increments, the least signi�cant bit changes according to
the following pattern: 0110 (as opposed to 0101 with a binary pointer). For the

96

pointers in this design, the problem is �xed by changing {rd_addr[n-2:0], 1'b0}

to {rd_addr[n-2:0], ^rd_addr}.

FIFO Memory Modi�cations

The memory used to store the FIFO data is designed to behave like a synchronous
SRAM with a width of 8 bits, a depth of 128 bits, and write enable signals for the
upper and lower 4 bits of the word line. This SRAM is not instantiated; however,
the syntax used in the Verilog code infers a synchronous SRAM.

The read data width is 8 bits; one word in the RAM is read for every read, and
the read address width of the FIFO matches read address width in the RAM. The
write data width is 4 bits; therefore, the most signi�cant bits (wr_addr[7:1]) of
the write address are used to address corresponding the 8-bit word in the RAM.
The least signi�cant bit (wr_addr[0]) is used to determine which set of 4 bits in
the RAM to overwrite.

Grey code pointers further complicate the write handling. As a Grey code pointer
increments, the least signi�cant bit changes according to the following pattern: 0110
(as opposed to 0101 with a binary pointer). Therefore, sometimes wr_addr[0] ==

0 means the lower 4 bits must be written, and sometimes it means the upper 4 bits
must be written. This is determined based on the value of ^wr_addr[7:1].

Over�ow and Under�ow Handling

The original implementation in [8] does not detect or handle over�ows and under-
�ows. This implementation was modi�ed to allow reads only when the FIFO is not
empty (by using rd_en && !rd_empty instead of only rd_en) and writes only when
the FIFO is not full (by using wr_en && !wr_full instead of only wr_full). The
asynchronous pointer comparisons allow for the rd_empty output to assert as soon
as the FIFO is empty and the wr_full output to assert as soon as the FIFO is full;
this is required for the prevention of over�ows and under�ows.

First Word Fall Through Handling

The original implementation in [8] is designed such that the next word to be read is
copied to the rd_data output 1 cycle after rd_en is asserted. First word fall through
(FWFT) FIFOs have the next word copied to the rd_data output as soon as the
�rst word is written to the FIFO and immediately after the previous word is read.
Therefore, valid data is always on the rd_data output (unless the FIFO is empty),
and asserting rd_en indicates that the controlling module is ready for the next data
word.

The FWFT logic is implemented by modifying the read enable signal sent to the
FIFO memory. The original implementation uses the rd_en input to the module
as the read enable for the memory. The modi�ed implementation uses rd_en ||

async_empty_n, where async_empty_n is a signal that is high when the FIFO is
not empty, and low when the FIFO is empty. This signal is updated as soon as
an empty FIFO is written, and this signal is also used to generate rd_empty. The
result is that the data is transferred to rd_data at the same time as rd_empty is
updated, ensuring the correct behavior.

97

3.28 spreader

3.28.1 Description

This module is part of the TX state machine in the RFcontroller module. This
module reads packet data out of the tx_fifo2 module 4 bits at a time, where
each set of 4 bits is called a symbol. This module converts each symbol into to a
series of 32-bit chips, also referred to as OQPSK codes, outputted serially to the
radio circuit, via the tx_dout output of the top module. The process of converting
symbols to chips is also called spreading. The radio circuit uses these chips to
control the frequency of the transmitted signal. This module also indicates when it
has �nished transmitting the start-of-frame delimiter (SFD) of the packet, and when
it has �nished transmitting the entire packet. This is used by the RFcontroller

module to trigger interrupts to the Cortex-M0 or the RFTIMER module.

3.28.2 Input/Output Ports

clk Input clock.

resetn Input reset. This is be connected to the global reset. It is also recommended
that this module be reset between packet transmissions.

tx_dout[3:0] Input data from the TX FIFO.

tx_start Input from the RFcontroller module to trigger the symbol-to-chip con-
version and transmission.

tx_�fo_empty Input indicating that the FIFO is empty. This indicates that all
packet data is transmitted and the transmission is complete.

tx_rd_en Read enable output to the TX FIFO to request more data.

tx_sfd_sent Output pulse indicating that the last bit of the SFD has been sent.

chip_dout Serial output stream of chips sent to the radio circuit. This is connected
to the radio circuit via the tx_dout output of RFcontroller and the top
module.

done Output pulse indicating that the last bit of the packet has been sent.

3.28.3 Design Details

OQPSK vs. MSK Modulation.

The IEEE 802.15.4 standard [15] de�nes the symbol-to-chip mapping according to
a method of modulation called OQPSK, which assigns one code (a set of 32 chips)
to each 4-bit symbol. The method of modulation used in the radio for the Single
Chip Mote is called MSK. The MSK modulator generates a radio signal equivalent
to one generated by an OQPSK modulator.

This module instantiates the symbol2chips submodule to convert symbols into
two sets of 16 OQPSK chips, called I and Q. I includes all of the even chips in the
code, and Q includes all of the odd chips in the code. If a single code has 32 chips,

98

labeled c0, c1, c2, ..., c30, c31, then the I chips are c0, c2, c4, ..., c28, c30 and the Q chips
are c1, c3, c5, ..., c29, c31. Another way to describe this is to say that in = c2n and
qn = c2n+1. The I chips and Q chips for OQPSK modulation are combined in a
particular way to generate 32 chips for MSK modulation.

Suppose the nth symbol in a packet is equivalent OQPSK chips i0,n...i15,n and
q0,n...q15,n and MSK chips m0,n...m15,n, then the conversion between OQPSK and
MSK is:

m0,n = i0,n ⊕ q0,n

m1,n =!(i1,n ⊕ q0,n)

m2,n = i1,n ⊕ q1,n

m3,n =!(i2,n ⊕ q1,n)

m4,n = i2,n ⊕ q2,n

...

m28,n = i14,n ⊕ q14,n

m29,n =!(i15,n ⊕ q14,n)

m30,n = i15,n ⊕ q15,n

m31,n =!(i0,n+1 ⊕ q15,n)

Note that the last chip of symbol n depends on symbol n + 1. The method to
convert between OQPSK and MSK is described in more detail in [25].

State Machine

This module uses a state machine used to read symbols from the TX FIFO, convert
it to sets of I chips and Q chips, combine I and Q to generate MSK chips, and
send each MSK chip serially to the radio circuit in the correct order. The I chips
and Q chips are stored in the 16-bit I and Q registers, which are updated during
the appropriate time by the state machine. The i_ptr and q_ptr registers store
pointers to individual bits within the I and Q registers, which are also incremented
at the appropriate time by the state machine. The output, chip_dout, is assigned
to (I[i_ptr] ^Q[q_ptr]) ^inv_chip_dout, where inv_chip_dout indicates that
the output must be inverted (this signal is also set by the state machine). The
overall procedure for converting an entire packet to MSK chips is described by the
following states:

IDLE Wait for the tx_start signal, then go to the WAIT state.

WAIT After the tx_start signal, wait for the TX FIFO to have data (indicated by
!tx_fifo_empty), then go to the FIFO_READ state. Reset i_ptr to 4'b1111

and q_ptr to 4'b1110.

FIFO_READ Assert the read enable signal for the TX FIFO, increment q_ptr from
4'b1110 to 4'b1111, and go to the CHIP_CONVERSION_I state. The data on
the output of the FIFO updates during the following cycle. The FIFO output
data is connected to the input of the symbol2chips module, which converts
the data into I and Q chips.

99

CHIP_CONVERSION_I Store the updated value of the I chips onto the I register,
increment i_ptr from 4'b1111 to 4'b0000, and go to the CHIP_CONVERSION_Q
state.

CHIP_CONVERSION_Q Store the updated value of the Q chips onto the Q register,
increment q_ptr from 4'b1111 to 4'b0000, and go to the SHIFT_WAIT_I state.

SHIFT_WAIT_I Increment i_ptr. If i_ptr is less than 4'b1110, go to the SHIFT_WAIT_Q
state. Otherwise, go to the FIFO_READ state if there is still data in the FIFO
(!tx_fifo_empty) or go to the FINISH_Q state if the FIFO is empty.

SHIFT_WAIT_Q Increment q_ptr and go back to the SHIFT_WAIT_I state.

FINISH_Q Increment q_ptr from 4'b1110 to 4'b1111 and go to the FINISH state.

FINISH Assert the done output and go to the IDLE state.

This process is implemented in the state machine shown in Figure 3.18. Note
that i_ptr and q_ptr are not reset to zero. Instead, the pointers are reset in order
to ensure that the CHIP_CONVERSION_I and CHIP_CONVERSION_Q states output the
31st and 32nd chip while also updating the I and Q registers at the appropriate time.
In particular, the CHIP_CONVERSION_Q state requires i0,n+1 and q15,n to generate the
proper value for m31,n. This requires that i_ptr is 4'b0000, q_ptr is 4'b1111,
register I is updated right after the CHIP_CONVERSION_I state, and register Q is
updated right after the CHIP_CONVERSION_Q state. Working backwards from there
determines the default/reset values for i_ptr and q_ptr.

Also not shown in Figure 3.18 is how the tx_sfd_sent output is generated.
The read_count register keeps track of the number of reads from the FIFO. The
SFD_DONE_CYCLE local parameter de�nes the number of reads from the FIFO until
the last bit of the SFD has been sent. The IEEE 802.15.4 standard [15] indicates
that the beginning of a packet is comprised of 8 copies of the 4'b0000 symbol, fol-
lowed by the two SFD symbols. Therefore, there are 10 symbols in the FIFO that
must be read, converted, and transmitted before the tx_sfd_sent output is pulsed.
However, the last bit of the SFD is sent just after the 11th symbol is read from the
FIFO, during the CHIP_CONVERSION_Q state. Therefore, the SFD_DONE_CYCLE pa-
rameter is set to 11, and the tx_sfd_sent output is pulsed when (read_count ==

SFD_DONE_CYCLE) && (state == CHIP_CONVERSION_Q). The read_count register
stops incrementing after read_count == SFD_DONE_CYCLE + 1 to avoid wasting en-
ergy.

3.29 symbol2chips

3.29.1 Description

This module contains the combinational logic needed in the spreader module to
convert 4-bit symbols to two 16-bit sets of chips for radio packet data transmission.
Each symbol has one set of chips called I and one set called Q. This module uses the
OQPSK_I_CODE and OQPSK_Q_CODE values de�ned in chips.vh to map each symbol
to a series of chips.

100

IDLE

WAIT

FIFO

READ

CHIP

CONVERSION

Q

SHIFT

WAIT

I

FINISH

!tx_start

tx_start

!tx_fifo_empty

tx_fifo_empty

(i_ptr == 1110) && !tx_fifo_empty

i_ptr == 1110

&&

tx_fifo_empty

i_ptr != 1110

!resetn

CHIP

CONVERSION

I

SHIFT

WAIT

Q

FINISH

Q

Figure 3.18: Finite State Machine for the spreader module

101

3.29.2 Input/Output Ports

symbol[3:0] Input symbol to be converted to chips.

input_valid Input indicating that the value on the symbol input is valid. When
input_valid is high, the output is also valid. When input_valid is low, the
input is ignored and the output corresponds to MSK code for the 4'b0000

symbol.

I_chips[15:0] Output containing the OQPSK_I_CODE corresponding to the input
symbol. When input_valid is low, the input is ignored and the output cor-
responds to the chips for the 4'b0000 symbol.

Q_chips[15:0] Output containing the OQPSK_Q_CODE corresponding to the input
symbol. When input_valid is low, the input is ignored and the output cor-
responds to the chips for the 4'b0000 symbol.

3.29.3 Design Details

This module implements a case statement used to select the correct OQPSK codes
corresponding to the input symbol. The input_valid input was added to multi-
plex the input to the combinational logic inside this module. This prevents any
unnecessary switching when the module is not in use.

The IEEE 802.15.4 standard [15] de�nes the symbol-to-chip mapping for the
particular frequency band used by the Single Chip Mote (2450MHz) in section 10.2.4.
This section de�nes a set of 32 chips, c0...c31. The set I includes all of the even chips,
c0, c2, c4, ..., c28, c30, and the set Q includes all of the odd chips, c1, c3, c5, ..., c29, c31.
Another way to describe this is to say that in = c2n and qn = c2n+1. The Verilog �le
chips.vh contains the mapping for each 4-bit symbol to both I and Q.

3.30 corr_despreader

3.30.1 Description

This module is part of the RX state machine in the RFcontroller module. This
module reads the incoming data from the radio circuit in order to detect a received
packet and store the data in the RX FIFO. The incoming data is a series of fre-
quency shifts encoded into a serial binary data stream. These frequency shifts are
determined using a demodulation circuit, and the Single Chip Mote uses a method
of demodulation called MSK. The bits in the stream are called chips, and sets of
32 chips correspond to 4-bit sets of actual data called symbols. However, since this
Single Chip Mote uses MSK demodulation, only the �rst 31 chips out of every set
are used for comparison (see Dr. Osama Khan and Brad Wheeler for an explana-
tion). This module scans the stream of chips to �nd the start of a packet, then
converts the chips to symbols, and stores the symbols in the RX FIFO. This module
also indicates when a packet has been detected to the RFcontroller module and
provides the length of incoming packet to assist the RX state machine.

The process of converting chips to symbols is called despreading. Note that there
are only 16 possible symbols, while there are 232 possible combination of chips. Only

102

chips.vh

16 of those combinations correspond to symbols, and these combinations are referred
to as MSK codes. If a packet is transmitted with no errors, then each set of 31 chips
matches one of the 16 MSK codes. However, if there is an error in transmission,
some of the chips may be changed. Therefore, this module must also take every
input set of chips and �nd the closest matching code. This matching process is
called correlation.

3.30.2 Input/Output Ports and Parameters

clk Input clock.

resetn Input reset.

rx_din Serial input stream of chips from the radio circuit. This is connected to the
radio circuit via the rx_din input of the RFcontroller and top modules.

rx_start Input from the RFcontroller module indicating that this module begin
scanning the rx_din input to �nd the beginning of a packet.

dout[3:0] Output symbols to be written to the RX FIFO.

dout_valid Output indicating that the data on dout is valid. This is the write
enable input for the RX FIFO.

packet_detected Output indicating to the RFcontroller module that a packet
has been detected. This output also indicates that the data on the length

output is also valid.

length[6:0] Output containing the length of the recently detected packet in bytes.

THRESHOLD Parameter used when scanning the input data stream for the beginning
of a packet. The beginning of a packet is indicated by a repeating set of
symbols/chips called the preamble. This parameter determines how closely a
set of chips must match the preamble chips before it is decided that a packet
is detected. This parameter is passed into the correlator submodule.

3.30.3 Design Details

Correlator

This module instantiates the correlator submodule to �nd the symbol that is the
closet match to the current set of chips, as well as quantify the `closeness' of that
match. The `closeness' of a match is de�ned as the Hamming Distance, where a
smaller Hamming Distance means a closer match, and a Hamming Distance of 0
indicates a perfect match. A minimum Hamming Distance threshold can be used
when scanning for the start of a packet to reduce the amount of false-positives. This
threshold is de�ned by the THRESHOLD parameter, also passed into the correlator
submodule. Note that this module accepts 31 chips rather than 32 chips, since the
last (most recent) chip cannot be used for correlation.

103

Packet Detection

The IEEE 802.15.4 standard [15] requires that the beginning of a packet is comprised
of 8 copies of the 4'b0000 symbol, known as the preamble, followed by the two start-
of-frame delimiter (SFD) symbols. The �rst SFD symbol (denoted in the code as
STARTSYMBOL0) is 4'h0101 and the second SFD symbol (denoted in the code as
STARTSYMBOL1) is 4'h1110. The combination of the preamble and SFD are used to
detect the beginning of a packet.

Finite State Machine

The input chip values are shifted each cycle into a 32-bit shift register. The procedure
for detecting and capturing a packet is:

1. Each time a new chip is shifted in, check if the closest matching symbol is
4'b0000, and the minimum Hamming Distance is below the threshold.

� If the chips match 4'b0000, part of the preamble, and the minimum
Hamming Distance is below the threshold, wait 32 cycles for new chips
to shift in and move on to the next step.

� If the chips do not match the preamble, or the minimum Hamming Dis-
tance is above the threshold, go back to the �rst step.

2. Check if the set of chips matches the preamble.

� If the chips match the preamble, wait 32 cycles for new chips to shift in
and move on to the next step.

� If the chips do not match the preamble, go back to the �rst step.

3. Check if the set of chips matches the preamble or STARTSYMBOL0.

� If the chips match the preamble, wait 32 cycles for new chips to shift in
and repeat this step.

� If the chips match STARTSYMBOL0, wait 32 cycles for new chips to shift in
and move on to the next step.

� If the chips do not match the preamble or STARTSYMBOL0, go back to the
�rst step.

4. Check if the set of chips matches STARTSYMBOL1.

� If the chips match STARTSYMBOL1, then a packet is detected. Wait 32
cycles for new chips to shift in and move on to the next step.

� If the chips do not match the preamble, go back to the �rst step.

5. The next two symbols contain the length of the packet in bytes. Store the �rst
symbol, the LSB of the length. Wait 32 cycles.

6. Store the next symbol, the MSB of the length.

7. Use the packet length to determine how many symbols are left in the packet.
Continue to wait 32 cycles between each symbol and store each symbol in the
RX FIFO until the entire packet has been stored.

104

This process is implemented in the state machine shown in Figure 3.19. The
module stays in the IDLE state, where the input from the radio is ignored, until the
rx_start input is asserted by the RFcontroller module. The SCAN state is the �rst
step, where the shift register is checked each cycle to see if it matches the preamble.
The PREAMBLE_MATCH1 state is the second step, the PREAMBLE_MATCH2 state is the
third step, and so on. The max_bit_count signal in Figure 3.19 indicates when 32
new chips have been shifted into the shift register, and max_symbol_count indicates
when all of the data in the packet has been copied into the RX FIFO.

Note that this state machine looks for two copies of the preamble symbol and
then the beginning of the start symbol. The minimum number of preamble symbols
is not adjustable in the current version of the Verilog code. This can be made
adjustable by adding a counter and a parameter for the number of preamble symbols
to the PREAMBLE_MATCH2 state. The parameterized counter can check for two or more
preamble symbols in a row. To check for one preamble symbol, the PREAMBLE_MATCH2
state must be removed.

Storing Packet Data Into the FIFO

Each packet uses the two symbols after the SFD to indicate the size of the packet
payload, in bytes. The length �eld is 7 bits wide, since the maximum payload length
is 127 bytes. After the length is the packet payload, and after that there are two
additional bytes containing the cyclic redundancy check (CRC) value of the packet.
Both the payload and the CRC must be stored in the RX FIFO.

The symbol_count register stores the number of symbols written into the FIFO.
This register increments when the state is PAYLOAD_CAPTURE and max_bit_count

== 1, as this is when 32 new chips have been shifted in. At this point the chips
are converted to a symbol and stored into the FIFO. Once symbol_count is equal
to the number of symbols, minus one, and max_bit_count == 1, the last symbol is
written to the FIFO and the state transitions back to IDLE. The max_symbol_count
signal in Figure 3.19 is not in the Verilog code, but it represents the code that checks
if symbol_count is equal to the number of symbols minus one.

Calculating the Number of Symbols

The �rst symbol after the SFD contains the LSB of the length, length[3:0]. The
second symbol after the SFD contains the MSB of the length, length[6:4]. This
length does not include the extra two bytes for the CRC. This means that the
number of bytes to copy into the FIFO is length[6:0] + 2, and the number of
symbols is twice as much.

Given that the value compared to symbol_count is the number of symbols minus
1, the following simpli�cations allow for a small optimization in the size of the
register storing this value:

NumSymbolsInPacket = 2× (length+ 2)

NumSymbolsInPacket− 1 = 2× (length+ 2)− 1

NumSymbolsInPacket− 1 = 2× (length+ 1) + 2− 1

NumSymbolsInPacket− 1 = 2× (length+ 1) + 1

105

IDLE

SCAN

PREAMBLE

MATCH1

STARTSYMBOL

MATCH

LEN LSB

CAPTURE

PAYLOAD

CAPTURE

!resetn

PREAMBLE

MATCH2

LEN MSB

CAPTURE

!rx_start

rx_start

symbol != 0 ||

!match_below_threshold

symbol == 0 &&

match_below_threshold

!max_bit_count

!max_bit_count

!max_bit_count

max_bit_count

!max_bit_count

max_bit_count &&

symbol == 0

max_bit_count &&

symbol != 0 &&

symbol != STARTSYMBOL0

max_bit_count &&

symbol == STARTSYMBOL0

max_bit_count &&

symbol != 0

max_bit_count &&

symbol == 0

!max_bit_count

max_bit_count &&

symbol == STARTSYMBOL1

max_bit_count &&

symbol != STARTSYMBOL1
max_bit_count

!max_bit_count ||

!max_symbol_count
max_bit_count &&

max_symbol_count

Figure 3.19: Finite State Machine for the cor_despreader module

In Verilog, this is the same as adding 1 to length, shifting to the left by
one, and concatenating a 1 to the end, or {length+1, 1'b1}. Since the last
bit is always 1, this module instead stores length+1 in an 8-bit register called
total_symbol_count, rather than the storing the actual number of symbols in the
packet (requiring a 9-bit register). The state transitions from PAYLOAD_CAPTURE to
IDLE when max_bit_count && (symbol_count == {total_symbol_count, 1'b1}).

3.31 correlator

3.31.1 Description

This module contains the combinational logic needed in the corr_despreader mod-
ule to �nd the 4-bit symbol that matches the current set of 31 chips. Each 4-bit
symbol has a corresponding set of chips referred to as an MSK code. The Hamming
Distance de�nes how 'close' two binary values are to one another, where a smaller
Hamming Distance means a closer match, and a Hamming Distance of 0 means a
perfect match. This module calculates the Hamming Distance between the input
and each of the 16 possible MSK codes, and returns the symbol corresponding to
the code with the minimum Hamming Distance. This module also has the option
to check if the minimum Hamming Distance is at or below a threshold speci�ed by
a Verilog parameter. This threshold is used when the corr_despreader module is
scanning for the beginning of a packet.

3.31.2 Input/Output Ports and Parameters

chips_in[30:0] 31-bit set of input chips to be correlated with a symbol.

input_valid Input indicating that the data on the chips_in input is valid. When
input_valid is high, the output is also valid.

use_threshold Input indicating that the correlator module must also compare
the calculated minimum Hamming Distance to the threshold speci�ed by

106

the THRESHOLD parameter. The result of this comparison is driven on the
match_below_threshold output.

symbol_out[3:0] Output with the closest matching symbol to the chips_in input.
When input_valid is low, the input is ignored and the output corresponds
to the 4'b0000 symbol.

match_below_threshold Output indicating that the current minimum Hamming
Distance is at or below the threshold speci�ed by the THRESHOLD parameter.
This output is only valid when use_threshold is high; otherwise, this output
is 1.

THRESHOLD Parameter describing the minimum Hamming Distance threshold used
when scanning for the beginning of a packet.

3.31.3 Design Details

While the function of this module is seemingly simple, to �nd the minimum Ham-
ming Distance between the input and a set of 16 codes and return the symbol
corresponding to the code with the minimum distance, there is no straightforward
method in Verilog to specify this behavior. The Verilog code for this module con-
tains several generate statements to decrease the code size and take advantage of
the redundancy in this design. As a result the code can be di�cult to understand
at �rst glance without a detailed explanation.

First, note that the MSK codes are all de�ned in the chips.vh header �le.
The mapping of symbols to MSK codes was provided by Brad Wheeler, a graduate
student researcher working on the radio circuit for the Single Chip Mote. The
following code copies these values into an array called MSK_CHIPS, allowing for each
individual code to be easily indexed within a generate statement:

reg [30:0] MSK_CHIPS [0:15];

always @(*) begin

MSK_CHIPS [0] = `MSK_CODE_0;

MSK_CHIPS [1] = `MSK_CODE_1;

MSK_CHIPS [2] = `MSK_CODE_2;

MSK_CHIPS [3] = `MSK_CODE_3;

MSK_CHIPS [4] = `MSK_CODE_4;

MSK_CHIPS [5] = `MSK_CODE_5;

MSK_CHIPS [6] = `MSK_CODE_6;

MSK_CHIPS [7] = `MSK_CODE_7;

MSK_CHIPS [8] = `MSK_CODE_8;

MSK_CHIPS [9] = `MSK_CODE_9;

MSK_CHIPS [10] = `MSK_CODE_A;

MSK_CHIPS [11] = `MSK_CODE_B;

MSK_CHIPS [12] = `MSK_CODE_C;

MSK_CHIPS [13] = `MSK_CODE_D;

MSK_CHIPS [14] = `MSK_CODE_E;

MSK_CHIPS [15] = `MSK_CODE_F;

end

The following syntax speci�es an array of registers: reg [N-1:0] arr[0:M-1],
where the [N-1:0] part indicates that the width of the registers is N bits, and the
[0:M-1] part indicates that the number of registers in the array is M. In order to
access these registers in Verilog, �rst the register must be selected, and then the
bit(s) within the register are selected:

reg [N-1:0] arr [0:M-1];

wire [N-1:0] myreg;

107

wire [2:0] mybits;

assign myreg = myarray [3];

assign mybits = myreg [2:0];

Several of these register arrays are used for the sections of this code written
inside generate statements.

Calculating the Hamming Distance between two binary values is straightforward.
The XOR of the two numbers returns another binary number with a 1 for each bit
that does not match, and a 0 for every bit that does match. Adding the number
of ones in this result yields the Hamming Distance. The hamming_distance_xor

array holds the 31-bit results of XORing the input with each of the MSK codes. The
hamming_distance_sum array holds the 5-bit results of adding the individual bits
for each register in hamming_distance_xor. The values in hamming_distance_sum

are equal to the Hamming Distance between the input and each of the MSK codes.
This value ranges between 0 and 31. The calculation for these two arrays is found
in the for loop labeled calculate_hamming_distance.

Finding the minimum Hamming Distance, and the corresponding symbol is much
more di�cult. The method used in this module is similar to performing a binary
result on the values stored in the hamming_distance_sum array from the bottom-up.

The �rst step is to compare every two values in hamming_distance_sum and
�nd the minimum. This means that hamming_distance_sum[0] is compared to
hamming_distance_sum[1], hamming_distance_sum[2] is compared to hamming-

_distance_sum[3], and so on. The result of this comparison is eventually used to
�nd the �rst bit of the symbol_out output. The bit0_comparison_result register
has 8 bits to store the results of this comparison in the following manner:

� If hamming_distance_sum[0] < hamming_distance_sum[1], then set
bit0_comparison_result[0] = 1.
Otherwise, set bit0_comparison_result[0] = 0.

� If hamming_distance_sum[2] < hamming_distance_sum[3], then set
bit0_comparison_result[1] = 1.
Otherwise, set bit0_comparison_result[1] = 0.

� Continue following the same pattern until the results of all 8 comparisons are
in bit0_comparison_result.

At the same time, the minimum Hamming Distances for each comparison are
stored in the bit0_comparison_minimum arrays to be used for the next set of com-
parisons:

� If hamming_distance_sum[0] < hamming_distance_sum[1], then set
bit0_comparison_minimums[0] = hamming_distance_sum[0]. Otherwise,
set bit0_comparison_minimums[0] = hamming_distance_sum[1].

� If hamming_distance_sum[2] < hamming_distance_sum[3], then set
bit0_comparison_minimums[1] = hamming_distance_sum[2]. Otherwise,
set bit0_comparison_minimums[1] = hamming_distance_sum[3].

� Continue following the same pattern until the minimum Hamming Distances
of all 8 comparisons are in bit0_comparison_minimums.

108

The �rst set of comparisons, and the assignments to bit0_comparison_result

and bit0_comparison_minimums is found in the for loop labeled compare_bit0.
The next step is to compare every two values in bit0_comparison_minimums,

and store those minimums. This is the same as the process described in the �rst set of
comparisons, only now the bit0_comparison_minimums values are being compared,
and the results are stored in bit1_comparison_result and bit1_comparison_min-

imums. This time there are 4 comparisons in total, and the code is found in the for
loop labeled compare_bit1.

The third step is to compare every two values in bit1_comparison_minimums,
and store those minimums. This is the same as the process described in the �rst set of
comparisons, only now the bit1_comparison_minimums values are being compared,
and the results are stored in bit2_comparison_result and bit2_comparison_min-

imums. This time there are 2 comparisons in total, and the code is found in the for
loop labeled compare_bit2.

The �nal step is to compare the two values in bit2_comparison_minimums

and store the result in the bit3_comparator register. The following code essen-
tially performs a binary search over the results stored in the bit3_comparator and
bitx_comparison_result registers in order to �nd the symbol with the minimum
distance:

assign hamming_distance_minimum_symbol [3] = ~bit3_comparator;

assign hamming_distance_minimum_symbol [2] = ~bit2_comparison_result[

hamming_distance_minimum_symbol [3]];

assign hamming_distance_minimum_symbol [1] = ~bit1_comparison_result[

hamming_distance_minimum_symbol [3:2]];

assign hamming_distance_minimum_symbol [0] = ~bit0_comparison_result[

hamming_distance_minimum_symbol [3:1]];

Finally, the following code assigns symbol_out, and checks if the minimum distance
is at or below the threshold:

assign minimum_distance = hamming_distance_sum[hamming_distance_minimum_symbol];

assign match_below_threshold = use_threshold ? (minimum_distance <= THRESHOLD) : 1'

b1;

assign symbol_out = hamming_distance_minimum_symbol;

3.32 bit_sync

3.32.1 Description

This module synchronizes a signal from a slower clock domain to a faster one. In
particular, the fast clock samples the signal from the slow clock, and outputs a
single-cycle (according to the fast clock) pulse when a rising edge is detected.

This module is used in the RFcontroller module to synchronize the tx_sfd-

_sent and tx_spread_done signals from the spreader module. These signals in-
dicate that the last bit of a packet's SFD and the last bit of a packet has �nished
transmitting, respectively.

3.32.2 Input/Output Ports

reset_n Input reset.

109

D Q

E

sync0

enable

clk_out

D Q

Eenable

clk_out

D Q

Eenable

clk_out

enable

clk_out

sync1 sync2 sync3in
enable

D Q

E

out

Figure 3.20: Schematic of the bit_sync module

enable Enable input for the entire synchronizer. Inputs are only be sampled when
this input is asserted. The output remains low unless this input is asserted.

in Input signal to be sampled. This input must be aligned to a clock slower than
clk_out.

clk_out Input sampling clock. This clock is used to sample the input, in. The
output pulse, out, is aligned to this clock.

out Edge detected pulse output. This output is a single-cycle pulse (aligned with
clk_out) indicating that an edge in the in input is detected.

3.32.3 Design Details

This synchronizer is designed using a shift register of depth 4 to sample the input.
A long shift register is used to reduce the probability of metastability at the output.
The last two bits in the shift register are compared to determine if there is a rising
edge in the input. The shift register does not sample new values unless the enable
input is asserted, and the output remains low unless the enable input is asserted.
A schematic of this circuit is shown in Figure 3.20.

3.33 bus_sync

3.33.1 Description

This module synchronizes a bus from a slower clock domain to a faster one. In
particular, this module behaves somewhat like a FIFO with a depth of 1. The
slow clock writes to the bus_sync module. The written data is copied into another
register using the fast clock, and a valid signal is asserted. The faster clock then
asserts its read enable signal to indicate that it read the data, and the valid signal
is de-asserted.

This module is used in the RFcontroller module to synchronize the length of a
packet being received from the corr_despreader module. The valid signal of this
module is used by the RFcontroller both to indicate that the corr_despreader

module has detected an incoming packet, and it has decoded the length of that
packet.

3.33.2 Input/Output Ports and Parameters

reset_n Input reset.

110

clk Input data clock. The input data, din, and the write enable, wr_en, are aligned
to this clock.

sync_clk Input sampling clock. This clock is used to sample the input data. The
output data, dout, and the valid output, valid, are aligned to this clock. The
write enable input, wr_en, must also be aligned to this clock.

sync_en Enable input for the entire synchronizer. Both wr_en and rd_en are ig-
nored if this input is low. This input must be stable before attempting to
write and remain stable as long as this synchronizer is in use.

wr_en Write enable input. This input must be aligned with clk. When this input
is high, the input data, din is stored and is eventually written to the data
output, dout.

rd_en Read enable input. This input must be aligned with sync_clk. This input
indicates that the data on dout has been read. The valid output de-asserts
after a read.

din[BUS_LENGTH-1:0] Input data to be synchronized. This input must be aligned
with clk.

dout[BUS_LENGTH-1:0] Synchronized output data. This output is aligned with
sync_clk.

valid Data valid output. Indicates that the data on dout is valid. This output is
aligned with sync_clk.

BUS_LENGTH Parameter describing the width of the data buses.

3.33.3 Design Details

This module ignores all inputs as long as the sync_en input is low. When both
sync_en and wr_en are asserted, this module samples the data input, din, onto
a register using the input clock clk. The wr_en input itself is also sampled onto
a register using clk. The registered version of wr_en is then sampled into a shift
register with a depth 3 using sync_clk. This shift register is used to reduce the
probability of metastability. The last two bits are compared to determine if there is
a rising edge. This rising edge indicates that data was previously sampled from din,
and that the registered value is currently stable. This rising edge is used to copy
the registered din data into another register using sync_clk. At the same time,
the register with the valid output is set. This register is cleared by asserting the
rd_en input. Throughout this entire process the sync_en input must be high. A
schematic of this circuit is shown in Figure 3.21.

This synchronizer design may fail if there are multiple writes in succession, as
there is no check to see if the value from a previous write is read before writing again.
However, this module is used in a context where multiple writes are not possible.
This module is used to only synchronize one signal between two clock domains on a
single occasion, and then is reset.

111

D Q

E

D Q

E

D Q

E

D Q

E

D Q

E

D Q

E

clk sync_clk

sync_reg0

sync_en

edge_detected

din r_din doutr_dout

rd_en

wr_en

r_valid valid

sync_reg1 sync_reg2

sync_clk sync_clk

r_wr_en

sync_en sync_en sync_en

sync_clk

sync_clk

sync_en

sync_en

1
0

0
1

rd_en

sync_en

D Q

E

clk

sync_en

Figure 3.21: Schematic of the bus_sync module

3.34 crcParallel

3.34.1 Description

This module is used by the RFcontroller module to calculate the cyclic redundancy
check (CRC) value of a radio packet conforming to the IEEE 802.15.4 standard. This
standard uses CRC to detect any errors in a received packet.

The theory behind the CRC calculation may be relatively confusing for those
without any experience in error detection and correction; however, its purpose and
use is straightforward. The CRC is the result of a mathematical function over the
entire payload data of a packet. On the transmission side, a 16-bit CRC is calculated
over the payload (up to 127 bytes) and appended to end of the packet. On the receive
side, the 16-bit CRC is calculated over the entire payload and the additional CRC
bits appended to the end of the packet. If the result on the receive end is not 0,
then there is an error in the packet payload and the data should be discarded.

Typical implementations calculate the CRC input 1 bit of the payload at a
time. Such a module requires that the payload data be clocked in serially, from
LSB to MSB. However, all of the operations in the RFcontroller module deal with
bytes rather than individual bits, and serializing the data for this calculation slows
down the overall packet transmission process. Therefore, this implementation was
designed to calculate the CRC using inputs of 1 byte instead of 1 bit. The packet
data is clocked in 1 byte at a time, from the �rst byte in the packet (the �rst byte
transmitted) to the last byte in the packet.

For more information on the CRC calculation, see section 5.2.1.9 of the IEEE
802.15.4 standard [15]. A copy is found in scm-digital/doc/.

3.34.2 Input/Output Ports

HCLK Input clock.

HRESETn Input reset. This input is used for the main system reset.

local_rst Input reset from the RFcontroller. This input is used when the RFcon-
troller module clears the CRC value between computations. The CRC must
be reset before each computation in order to produce the correct result.

sample_en Input indicating that the input is valid and the CRC value must update.

112

in[7:0] Data input. This is the packet payload data.

crc[15:0] CRC output. This is the CRC calculated over all of the previous inputs
since the module was reset. This value is not valid until the entire packet
payload is inputted to this module.

3.34.3 Design Details

Typical CRC implementations use a linear feedback shift register (LFSR) to calcu-
late the CRC 1 bit at a time. This is the method used in section 5.2.1.9 of the IEEE
802.15.4 standard [15].

This module instead calculates the CRC using an 8-bit input by following the
method described in [30]. The design process involves creating a reference serial
implementation (such as an LFSR), and recording the output given a series of par-
ticular inputs. These results can be used to determine the output / next state as a
function of the 16-bit current state and the 8-bit input.

A testbench was created to compare the results of this module with the serial
reference implementation. A large number of random inputs were generated and the
outputs were compared for every 16 bits of input. This module matched the serial
result in each comparison.

For more information on how to create a parallel CRC calculation using a serial
reference, see [30]. A copy is found in scm-digital/doc/.

3.35 RFTIMER

3.35.1 Description

This module is a special-purpose timer designed to interface with the RFcontroller
module. The timer itself is a counter (with a parameterized width) connected to
the CLK_RFTIMER clock with a frequency of 500kHz. There are 8 compare units (the
number of compare units is parameterized) that generate an interrupt to the Cortex-
M0 when the counter matches the value stored in the compare unit. The compare
units also have the option of sending a trigger to the RFcontroller module. There
are also 4 capture units (the number of capture units is parameterized) that capture
the value of the timer when it receives either a signal from the Cortex-M0 or an
interrupt from the RFcontroller module.

With the correct combination and con�guration of compare and capture units,
the Single Chip Mote is able to send packets or listen for incoming packets at speci�c
times without any intervention from the software on the Cortex-M0 beyond the
initial setup. This module is also suitable as a timer for purposes other than sending
or receiving packets.

3.35.2 Input/Output Ports and Parameters

HRESETn Input reset.

HCLK System clock input.

TCLK Timer clock input.

113

HSEL Slave select input.

HWRITE Write select input.

HTRANS[1] Transfer type input.

HADDR[31:0] Address input.

HWDATA[31:0] Write data input.

HRDATA[31:0] Read data output.

HREADY Transfer �nished input. This input indicates that the previous transfer on
the bus has �nished and that address phase signals must be latched.

HREADYOUT Transfer �nished output.

tx_load_done_in Input from the RFcontroller module to the capture units for
the TX_LOAD_DONE interrupt.

tx_sfd_done_in Input from the RFcontroller module to the capture units for the
TX_SFD_DONE interrupt.

tx_send_done_in Input from the RFcontroller module to the capture units for
the TX_SEND_DONE interrupt.

rx_sfd_done_in Input from the RFcontroller module to the capture units for the
RX_SFD_DONE interrupt.

rx_done_in Input from the RFcontroller module to the capture units for the
RX_DONE interrupt.

tx_load_trigger_out Output to the RFcontroller module from the compare
units for the TX_LOAD trigger.

tx_send_trigger_out Output to the RFcontroller module from the compare
units for the TX_SEND trigger.

rx_start_trigger_out Output to the RFcontroller module from the compare
units for the RX_START trigger.

rx_stop_trigger_out Output to the RFcontroller module from the compare
units for the RX_STOP trigger.

NUM_COMPARE_UNITS Parameter describing the number of compare units.

NUM_CAPTURE_UNITS Parameter describing the number of capture units.

COUNTER_WIDTH Parameter describing the width of the counter used for the timer.

114

D Q

E

HCLK

D Q

E

HCLK

D Q

E

HCLK

D Q

E

HCLK

HREADY

HREADY

HREADY

HREADY

HSEL

HTRANS[1]

HWRITE

HADDR

RFTIMER_REG__CONTROL

RFTIMER_REG__COUNTER

RFTIMER_REG__MAX_COUNT

RFTIMER_REG__COMPAREi

RFTIMER_REG__COMPAREi_CONTROL

RFTIMER_REG__CAPTUREi_CONTROL

RFTIMER_REG__INT_CLEAR

==

==

==

==

==

==

==

control_wr_en

counter_wr_en

max_count_wr_en

comparex_wr_en[i]

comparex_control_wr_en[i]

capturex_control_wr_en[i]

int_clear_wr_en

rHSEL

rHTRANS[1]

rHWRITE

global_wr_en

rHADDR

HWDATA[CONTROL__COUNT_RESET]

control_wr_en
count_clear_en

Figure 3.22: Register enable signals from the AHB for the RFTIMER module.

115

3.35.3 Design Details

Clocking Assumptions

In order for this module to function correctly, the clock frequency of the timer ftimer

must be a division of the system clock frequency fsys such that fsys = N × ftimer,
where N is an integer. In the case of the Single Chip Mote digital system on
an FPGA, the system clock HCLK, has a frequency of 5MHz, and the timer clock,
CLK_RFTIMER (connected to the TCLK input on this module), has a frequency of
500kHz. The rising edge of the timer clock must be aligned to the rising edge of
the system clock. In general this is achieved by having the timer clock and the
system clock originate from the same oscillator and using feedback to keep their
relative phases in alignment. There are no synchronization issues as long as these
requirements are met.

Synchronization

The timer operates in the slower timer clock domain, and the AHB bus (that sets
the con�guration registers) operates in the faster system clock domain. If the re-
lationship between these two clocks is unknown, then the RFTIMER module would
require synchronizers to pass data between the two clock domains. However, by
requiring that the timer clock and system clock are aligned in phase, the following
assumptions are valid:

� Registers in the timer clock domain only change their value on the rising edge
of the timer clock. Since this coincides with the rising edge of the system
clock, the output of those registers are also only changing on the rising edge
of the system clock, and are stable at all other times. This means that any
logic in the system clock domain can use the output of a register in the timer
clock domain without a synchronizer. Therefore, the AHB can directly read
any registers in the RFTIMER module that are connected to TCLK.

� Logic in the timer clock domain relying on con�guration registers in the system
clock domain must not be connected directly to the output of those registers.
It is possible for registers in the system clock domain to change multiple times
during a single timer clock cycle, leading to erratic behavior.

� Con�guration registers in the system clock domain are safely sampled by regis-
ters in the timer clock domain by directly connecting the output of the former
to the input of the latter. The data in the con�guration register may change
many times in a single timer clock cycle, but only the last value is written
into the sampling register. The timing tools use the de�ned phase relationship
between the two clock domains to ensure that there are no setup and hold
time violations. As a result, the paths between the registers are laid out such
that the sampling register does not sample when the input is changing and
there is little chance of metastability.

Therefore, it is possible to connect signals from between the two clock domains
without much overhead. Connecting signals from the system clock domain to the
timer clock domain �rst requires directly sampling the signals in the timer clock
domain and then using those sampled outputs in the timer clock domain logic. On

116

the other hand, signals from the timer clock domain are directly connected to logic
in the system clock domain. More robust synchronization logic is not necessary.

In the Verilog code for this module, all register names with the _t su�x indicate
that the register is connected to TCLK. All register names with the _h su�x indicate
that the register is connected to HCLK. A common pattern repeated throughout this
design is the use of a _h register written via the AHB and an accompanying _t

register sampling its value on every rising edge of TCLK.

Counter

The timer in the RFTIMER module is a counter (with a width of COUNTER_WIDTH)
that increments by 1 on the rising edge of TCLK. The counter value can also be
read or written via the RFTIMER_REG__COUNT register. If at any time the value in
this register is greater than or equal to the maximum counter value, stored in the
RFTIMER_REG__MAX_COUNT register, the counter will roll over back to 0 on the next
rising edge of TCLK. This counter is enabled or disabled using the ENABLE bit of the
RFTIMER_REG__CONTROL register, and is reset to 0 using the COUNT_RESET bit in the
same register.

Figure 3.23 contains a conceptual schematic and the actual Verilog code for
the RFTIMER_REG__COUNT register (count_t), the RFTIMER_REG__MAX_COUNT reg-
ister (max_count_t), and the ENABLE bit of the RFTIMER_REG__CONTROL register
(counter_en_t). The write enable signals are shown in Figure 3.22. max_count_t
and counter_en_t sample their values from the max_count_h and counter_en_h

registers written by the AHB. The count_t register samples its value from count_h.
While the logic at the input to count_h appears complicated, its function is

more straightforward. count_h always contains the next value of count_t. The
next value of count_t is either written to a speci�c value via the AHB, cleared to
0 via the AHB, or set to count_t + 1 when the counter is enabled.

When count_h is overwritten or cleared via the AHB, count_t will re�ect that
change on the next rising edge of TCLK. If there are no AHB writes, count_h is
set to count_t + 1 whenever count_h == count_t. When count_t updates, the
condition count_h == cont_t is true, and therefore count_h increments, and again
it stores the next value of count_t. If the timer is disabled (counter_wr_en == 0),
then count_h will not update when count_h == count_t (although it will update
when there is an AHB write since AHB writes must still be take e�ect when the
counter is disabled). There is additional logic to ensure that the value being written
to count_h is not larger than max_count_t.

Compare Units

This module has multiple compare units, speci�ed by the NUM_COMPARE_UNITS pa-
rameter, that store a value to compare against the counter. If the compare value
matches the counter, then the compare unit has the option to set a bit in the
RFTIMER_REG__INT register to trigger the Cortex-M0 interrupt, or send a trigger to
the RFcontroller module.

Each compare unit has a compare register, RFTIMER_REG__COMPAREi, and a con-
trol register, RFTIMER_REG__COMPAREi_CONTROL (where the i represents the index
of the compare unit, ranging from 0 to NUM_COMPARE_UNITS-1). The compare unit

117

1
0+1

0

==

TCLKHCLK

1
0

D Q

E

D Q

TCLKHCLK

max_count_t
HWDATA[COUNTER_WIDTH-1:0]

max_count_wr_en

counter_wr_en

count_t

count_clear_en

D Q

E

D Q

TCLKHCLK

counter_enable_t
HWDATA[CONTROL__ENABLE]

control_wr_en

D Q

E

count_h

count_t

count_h

0
1

counter_wr_en

a>b
a

bmax_count_t

count_clear_en

0
1
0

0

a>=b
a

bmax_count_t

count_t

max_count_h

counter_enable_h

D Q

counter_enable_t

HWDATA[COUNTER_WIDTH-1:0]

// Counter Enable Register

always @(posedge HCLK or negedge HRESETn) begin

if (! HRESETn) counter_enable_h <= 1'b0;

else if (control_wr_en) counter_enable_h <= HWDATA[CONTROL__ENABLE];

end

always @(posedge TCLK or negedge HRESETn) begin

if (! HRESETn) counter_enable_t <= 1'b0;

else counter_enable_t <= counter_enable_h;

end

// Max Count Register

always @(posedge HCLK or negedge HRESETn) begin

if (! HRESETn) max_count_h <= {COUNTER_WIDTH {1'b1}};

else if (max_count_wr_en) max_count_h <= HWDATA[COUNTER_WIDTH -1:0];

end

always @(posedge TCLK or negedge HRESETn) begin

if (! HRESETn) max_count_t <= {COUNTER_WIDTH {1'b1}};

else max_count_t <= max_count_h;

end

// Counter

always @(posedge HCLK or negedge HRESETn) begin

if (! HRESETn) count_h <= 0;

else if (counter_wr_en)

if (HWDATA[COUNTER_WIDTH -1:0] > max_count_t) count_h <= 0;

else count_h <= HWDATA[COUNTER_WIDTH -1:0];

else if (count_clear_en) count_h <= 0;

else if ((count_h == count_t) && counter_enable_t)

if (count_t >= max_count_t) count_h <= 0;

else count_h <= count_t + 1;

end

always @(posedge TCLK or negedge HRESETn) begin

if (! HRESETn) count_t <= 0;

else count_t <= count_h;

end

Figure 3.23: Schematic and Verilog code for the counter register, the max_count

register, and the counter_enable register for the RFTIMER module.

118

is implemented in the compare_unit submodule, with connections to the RFTIMER

module for the AHB interface and the interrupts.
In order to parameterize the module for di�erent numbers of compare units, each

compare_unit submodule is instantiated inside a generate statement. The following
buses and arrays of buses are used to connect to the compare_unit modules within
the generate statement based on their index i:

comparex_wr_en Bit i in this bus connects to the write enable signal for the RFTIMER-
_REG__COMPAREi register.

comparex_control_wr_en Bit i in this bus connects to the write enable signal for
the RFTIMER_REG__COMPAREi_CONTROL register.

comparex_interrupt_en Bit i in this bus connects to the interrupt enable output
for compare unit i, used for the Cortex-M0 interrupt.

comparex_match Bit i in this bus connects to the compare match output for compare
unit i, used for the Cortex-M0 interrupt.

compare Bus i in this array of buses connects to the output of the RFTIMER_REG-

__COMPAREi register.

compare_control Bus i in this array of buses connects to the output of the RFTIMER-
_REG__COMPAREi_CONTROL register.

tx_load_trigger_bus Bit i in this bus connects to the TX_LOAD trigger output from
compare unit i.

tx_send_trigger_bus Bit i in this bus connects to the TX_SEND trigger output from
compare unit i.

rx_start_trigger_bus Bit i in this bus connects to the TX_START trigger output
from compare unit i.

rx_stop_trigger_bus Bit i in this bus connects to the RX_STOP trigger output from
compare unit i.

For more information on the implementation of the compare units, see section
3.36.

Capture Units

This module has multiple capture units, speci�ed by the NUM_CAPTURE_UNITS pa-
rameter, that store the value of the counter into a register when triggered by the
Cortex-M0 via the AHB, or when triggered by an interrupt from the RFcontroller
module. This module also has the option to set a bit in the RFTIMER_REG__INT

register to trigger the Cortex-M0 interrupt after a capture.
Each capture unit has a capture register, RFTIMER_REG__CAPTUREi, and a con-

trol register, RFTIMER_REG__CAPTUREi_CONTROL (where the i represents the index
of the capture unit, ranging from 0 to NUM_CAPTURE_UNITS-1). The capture unit
is implemented in the capture_unit submodule, with connections to the RFTIMER

module for the AHB interface and the interrupts.

119

In order to parameterize the module for di�erent numbers of capture units, each
capture_unit submodule is instantiated inside a generate statement. The following
buses and arrays of buses are used to connect to the capture_unit modules within
the generate statement based on their index i:

capturex_control_wr_en Bit i in this bus connects to the write enable signal for
the RFTIMER_REG__CAPTUREi_CONTROL register.

capturex_interrupt_en Bit i in this bus connects to the interrupt enable output
for capture unit i, used for the Cortex-M0 interrupt.

capturex_trigger Bit i in this bus connects to the capture trigger output for
capture unit i, used for the Cortex-M0 interrupt.

capture Bus i in this array of buses connects to the output of the RFTIMER_REG-

__CAPTUREi register.

capture_control Bus i in this array of buses connects to the output of the RFTIMER-
_REG__CAPTUREi_CONTROL register.

For more information on the implementation of the capture units, see section
3.37.

Interrupts from the RFcontroller Module

When con�gured to do so, the RFcontroller module sends single-cycle (synchro-
nized with HCLK) pulses to the RFTIMER module to trigger a capture on any of the
capture units. These pulses come from the tx_load_done_in, tx_sfd_done_in,
tx_send_done_in, rx_sfd_done_in, and rx_done_in inputs to the RFTIMER mod-
ule, and are connected directly to each capture unit. The capture units are only trig-
gered when a particular input is enabled in the RFTIMER_REG__CAPTUREi_CONTROL
register. For more information on the events that trigger these pulses, see section
3.25.

Triggers to the RFcontroller Module

When con�gured to do so, the RFTIMER module sends single-cycle (synchronized
with TCLK) pulses during a compare match to the RFcontroller module. These
pulses trigger the state machines controlling the sending and receiving of pack-
ets. The compare units only generate a pulse when a particular output is en-
abled in the RFTIMER_REG__COMPAREi_CONTROL register. Each compare unit has
four outputs for the four types of triggers: tx_load_trigger, tx_send_trigger,
rx_start_trigger, rx_stop_trigger. The outputs to the RFcontroller module
from the RFTIMER module are the bitwise OR of the outputs from each compare
unit.

Cortex-M0 Interrupt

This module has one interrupt to the Cortex-M0, through the rftimer_irq output.
This output is the bitwise OR of the bits in the RFTIMER_REG__INT register, syn-
chronous with HCLK. Each bit in the RFTIMER_REG__INT corresponds to an interrupt

120

from a compare or capture unit, and is only be set if interrupts are globally enabled
by setting the INTERRUPT_ENABLE bit of the RFTIMER_REG__CONTROL register. Each
bit in this register is cleared by setting the same bit in the RFTIMER_REG__INT_CLEAR
register.

The RFTIMER_REG__INT register is a concatenation of three separate registers:
comaprex_int, capturex_int, and capturex_overflow. The comparex_int regis-
ter has 1 bit for each compare unit, and the capturex_int and capturex_overflow

registers have 1 bit for each capture unit.
A bit in the comparex_int register is set when the following conditions are true:

there is a compare match, interrupts are globally enabled, and the INTERRUPT_ENABLE
bit of the RFTIMER_REG__COMPAREi_CONTROL (assigned to comparex_interrupt-

_en[i]) is set. A compare match is indicated by the comparex_match[i] sig-
nal, a single-cycle pulse synchronous with TCLK. In order to prevent this pulse
from writing to the interrupt register multiple times (since the comparex_int reg-
ister is synchronous with HCLK), an edge detection circuit is used to sample the
comparex_match[i] signal and set comparex_int[i] on the rising edge. A con-
ceptual schematic of this edge detection circuit and the comparex_int[i] register
is shown in Figure 3.24 along with the actual Verilog code. The two edge_detect

registers are designed to clear themselves if the interrupt is disabled.
A bit in the capturex_int register is set when the following conditions are true: a

capture is triggered, interrupts are globally enabled, and the INTERRUPT_ENABLE bit
of the RFTIMER_REG__CAPTUREi_CONTROL (assigned to capturex_interrupt_en[i])
is set. A capture trigger is indicated by the capturex_trigger[i] signal, a single-
cycle pulse synchronous with HCLK. If the capturex_int[i] bit is not cleared before
the next capture event, the corresponding bit in the capturex_overflow register is
set instead. A conceptual schematic of the capturex_int[i] and capturex_over-

flow[i] registers is shown in Figure 3.25, along with the actual Verilog code.

3.35.4 Register Interface

Control Register

The counter is controlled using the RFTIMER_REG__CONTROL register. This register
has three bits, ENABLE, INTERRUPT_ENABLE, and COUNT_RESET. Setting the ENABLE

bit of this register causes the counter to increment during each timer clock cycle
that the ENABLE bit is set to 1. The counter does not increment if the ENABLE bit is
set to 0, and continues to increment from the current value of RFTIMER_REG__COUNT
when re-enabled. The INTERRUPT_ENABLE bit is a global enable signal for all of the
compare/capture interrupts. Setting the COUNT_RESET bit resets the value of the
counter back to 0 on the next timer clock (TCLK) cycle. While it is also possible to
reset the timer by writing a 0 to the RFTIMER_REG__COUNT register, the COUNT_RESET
bit allows the software to reset and enable the timer in a single register write access.
If multiple changes are made to the RFTIMER_REG__CONTROL register during a single
timer clock (TCLK) cycle, only the last change takes e�ect on the next rising edge of
the timer clock.

121

D Q

E

HCLK

D Q

E

HCLK

comparex_match[i]

D Q

E

HCLK
int_clear_wr_en

HWDATA[i]

comparex_int[i]
comparex_interrupt_en[i]

edge_detect0[i]

edge_detect1[i]
global_int_enable_t

global_int_enable_t

comparex_interrupt_en[i]

global_int_enable_t

comparex_interrupt_en[i]

global_int_enable_t

// Compare Interrupts

generate

for (i = 0; i < NUM_COMPARE_UNITS; i = i + 1) begin : compare_interrupts

always @(posedge HCLK or negedge HRESETn) begin

if (! HRESETn) edge_detect0[i] <= 1'b0;

else if (global_int_enable_t && comparex_interrupt_en[i]) edge_detect0[i]

<= comparex_match[i];

else if (edge_detect0[i]) edge_detect0[i] <= 1'b0;

end

always @(posedge HCLK or negedge HRESETn) begin

if (! HRESETn) edge_detect1[i] <= 1'b0;

else if (global_int_enable_t && comparex_interrupt_en[i]) edge_detect1[i]

<= edge_detect0[i];

else if (edge_detect1[i]) edge_detect1[i] <= 1'b0;

end

always @(posedge HCLK or negedge HRESETn) begin

if (! HRESETn) comparex_int[i] <= 1'b0;

else if (global_int_enable_t && edge_detect0[i] && !edge_detect1[i])

comparex_int[i] <= 1'b1;

else if (int_clear_wr_en && HWDATA[i]) comparex_int[i] <= 1'b0;

end

end

endgenerate

Figure 3.24: Schematic and Verilog code for the comparex_int[i] register for the
RFTIMER module.

122

D Q

E
int_clear_wr_en

HWDATA[NUM_COMPARE_UNITS+i]

capturex_trigger[i]

capturex_int_en[i]

HCLK

capturex_trigger[i]

capturex_int_en[i]

D Q

E
int_clear_wr_en

HWDATA[NUM_COMPARE_UNITS+NUM_CAPTURE_UNITS+i]

HCLK

capturex_int[i]

capturex_overflow[i]

global_int_enable_t

global_int_enable_t

capturex_trigger[i]

capturex_int_en[i]

global_int_enable_t

capturex_trigger[i]

capturex_int_en[i]

global_int_enable_t

// Capture Interrupts

generate

for (i = 0; i < NUM_CAPTURE_UNITS; i = i + 1) begin : capture_interrupts

always @(posedge HCLK or negedge HRESETn) begin

if (! HRESETn) capturex_int[i] <= 1'b0;

else if (global_int_enable_t && capturex_trigger[i] &&

capturex_interrupt_en[i] && !capturex_int[i]) capturex_int[i] <= 1'b1;

else if (int_clear_wr_en && HWDATA[NUM_COMPARE_UNITS+i]) capturex_int[i] <=

1'b0;

end

always @(posedge HCLK or negedge HRESETn) begin

if (! HRESETn) capturex_overflow[i] <= 1'b0;

else if (global_int_enable_t && capturex_trigger[i] &&

capturex_interrupt_en[i] && capturex_int[i]) capturex_overflow[i] <= 1'

b1;

else if (int_clear_wr_en && HWDATA[NUM_COMPARE_UNITS+NUM_CAPTURE_UNITS+i])

capturex_overflow[i] <= 1'b0;

end

end

endgenerate

Figure 3.25: Schematic and Verilog code for the capturex_int[i] and
capturex_overflow[i] registers for the RFTIMER module.

123

Counter and Max Count Registers

The counter value is stored on the RFTIMER_REG__COUNTER register, with a width
equal to the COUNTER_WIDTH parameter. The RFTIMER_REG__MAX_COUNT register
contains the maximum value of the counter before it rolls over to 0. When the timer
is enabled, the counter value increments by 1 with each rising edge of the timer clock
(TCLK). The RFTIMER_REG__COUNTER register can also be written by the software,
including when the timer is enabled. When the counter reaches the value in the
RFTIMER_REG__MAX_COUNT register, it rolls over back to 0 on the next rising edge.
If RFTIMER_REG__MAX_COUNT is changed when the counter value is greater than or
equal to the new RFTIMER_REG__MAX_COUNT value, then the counter rolls over to 0 on
the next rising edge. If multiple changes are made to the RFTIMER_REG__COUNTER

and RFTIMER_REG__MAX_COUNT registers during a single timer clock (TCLK) cycle,
only the last change takes e�ect on the next rising edge of the timer clock.

Compare Unit i Registers

The RFTIMER_REG__COMPAREi register, with width equal to the COUNTER_WIDTH pa-
rameter, contains the value that is compared to the counter in compare unit i. Each
compare unit, when con�gured to do so, generates an interrupt to the Cortex-M0
on the next rising edge of the system clock (HCLK) after the counter value matches
the value stored in the RFTIMER_REG__COMPAREi register. Each compare unit also
has the option of sending a trigger to the RFcontroller module with a single-
cycle pulse (according to TCLK) when the counter matches the value stored in the
RFTIMER_REG__COMPAREi register.

The RFTIMER_REG__COMPAREi_CONTROL register contains six bits to enable the
compare unit and con�gure its interrupts and triggers. The ENABLE bit must be set
in order for the compare unit to generate an interrupt or trigger. The other �ve bits
enable or disable the individual interrupts and triggers.

The compare unit is capable of generating �ve di�erent types of interrupts or
triggers in any combination. The �rst is an interrupt to the Cortex-M0, enabled by
setting the INTERRUPT_ENABLE bit of the RFTIMER_REG__COMPAREi_CONTROL regis-
ter. This interrupt causes the corresponding bit in the RFTIMER_REG__INT register
to be set. The other four are triggers for the RFcontroller module. These triggers
are enabled by setting the TX_LOAD_ENABLE, TX_SEND_ENABLE, RX_START_ENABLE
and RX_STOP_ENABLE bits in the RFTIMER_REG__COMPAREi_CONTROL register. These
triggers activate the state machines in the RFcontroller module to load the TX
FIFO with the packet data, send the data in the TX FIFO, turn on the radio to
listen for packets, and turn o� the radio after listening for packets, respectively. The
four triggers are intended to be mutually exclusive, though this is not enforced in the
compare unit logic. For more information on these triggers and how they interact
with the RFcontroller module, see section 3.25.

Changes can be made to both the RFTIMER_REG__COMPAREi and RFTIMER_REG-

__COMPAREi_CONTROL registers when the counter is enabled. If multiple changes are
made during a single timer clock cycle, only the last change takes e�ect on the next
rising edge of the timer clock.

124

Capture Unit i Registers

The RFTIMER_REG__CAPTUREi register, with width equal to the COUNTER_WIDTH pa-
rameter, stores the value of the counter register when of the enabled inputs to the
capture unit is asserted. The write is enabled on the next rising edge of the system
clock (HCLK) after the input is asserted, and therefore the input must be asserted
for at least 1 HCLK cycle.

The RFTIMER_REG__CAPTUREi_CONTROL register contains nine bits to con�gure
the inputs and interrupts to the capture unit. If the INTERRUPT_ENABLE bit is
set, a capture event triggers an interrupt to the Cortex-M0, by setting the cor-
responding bit in the RFTIMER_REG__INT register on the next rising edge of the
system clock (HCLK). If the INTERRUPT_ENABLE bit is set and the corresponding bit
in RFTIMER_REG__INT register is not cleared before the next trigger/capture event,
the corresponding over�ow bit is also set in the RFTIMER_REG__INT register. If there
is an over�ow then the value in the RFTIMER_REG__CAPTUREi register is overwritten.
If the INTERRUPT_ENABLE is not set, then the value in the RFTIMER_REG__CAPTUREi
register is overwritten, and there is no indication to the Cortex-M0 of a capture
event or an over�ow.

There are six possible inputs for triggering each capture unit. These inputs
can be enabled by setting the INPUT_SEL_SOFTWARE, INPUT_SEL_TX_LOAD_DONE,
INPUT_SEL_TX_SFD_DONE, INPUT_SEL_TX_SEND_DONE, INPUT_SEL_RX_SFD_DONE, and
INPUT_SEL_RX_DONE bits in the RFTIMER_REG__CAPTUREi_CONTROL register. The
�rst input is from the Cortex-M0, and is triggered when the software sets the
CAPTURE_NOW bit of the RFTIMER_REG__CAPTUREi_CONTROL register. The other �ve
inputs are from the RFcontroller module. These inputs are single-cycle (using
the system clock HCLK) pulses that indicate when loading the TX FIFO from data
memory is done, transmitting the SFD of a packet is done, transmitting an entire
packet is done, the SFD of a packet has been received, and an entire packet has been
received and stored in data memory, respectively. For more information on these
inputs from the RFcontroller module and their signi�cance, see section 3.25.

Setting the CLEAR bit of the RFTIMER_REG__CAPTUREi_CONTROL register resets
the value in the RFTIMER_REG__CAPTUREi register back to 0 on the next rising edge
of the system clock (HCLK). If the software sets the CLEAR bit during the same system
clock (HCLK) cycle that one of the inputs is triggered, then the trigger overrides
the clear, and the value of the counter is copied into the RFTIMER_REG__CAPTUREi

register.
Changes can be made to the RFTIMER_REG__CAPTUREi_CONTROL register when

the counter is enabled. If multiple changes are made during a single timer clock
cycle, only the last change takes e�ect on the next rising edge of the timer clock.

Interrupt and Interrupt Clear Registers

The RFTIMER module has one interrupt to the Cortex-M0. This interrupt is the
bitwise OR of all of the bits in the RFTIMER_REG__INT register, where each bit corre-
sponds to one interrupt source in the RFTIMERmodule. This interrupt is also globally
enabled or disabled using the INTERRUPT_ENABLE bit of the RFTIMER_REG__CONTROL
register.

The RFTIMER_REG__INT register contains 16 bits, eight of them corresponding
to the interrupts of the compare units, four of them corresponding to the interrupts

125

of the capture units, and four of them corresponding to the over�ow bits of the
capture units. Each bit in RFTIMER_REG__INT is set automatically by the RFTIMER
module in the event of an interrupt from its corresponding capture/compare unit.
Each bit in the RFTIMER_REG__INT is cleared by setting the corresponding bit in the
RFTIMER_REG__INT_CLEAR register.

If the interrupt service routine does not disable the counter after an interrupt,
then the timer may generate other interrupts as the service routine is running. If
there are bits in RFTIMER_REG__INT that are not cleared before the interrupt service
routine returns, then the interrupt signal will remain high, and the Cortex-M0 will
execute the interrupt service routine again until all bits in RFTIMER_REG__INT are
cleared.

It is recommended that the interrupt service routine store the value of RFTIMER-
_REG__INT, perform any necessary actions, and then write that stored value to
RFTIMER_REG__INT. This ensures that any additional interrupts as the service rou-
tine is running are not accidentally cleared, and the interrupt service routine is called
again to handle with the new interrupts.

Register Descriptions

Register 3.17: RFTIMER_REG__CONTROL (0x42000000)

C
O
U
N
T
_
R
ES
ET

2

IN
T
ER
R
U
PT
_
EN
A
B
LE

0

1

EN
A
B
LE

0

0

Reset

ENABLE Counter enable. The value in the RFTIMER_REG__COUNTER increments when enabled.
0 = disabled and 1 = enabled.

INTERRUPT_ENABLE Global interrupt enable. 0 = all interrupts disabled and 1 = inter-
rupts enabled.

COUNT_RESET (Write-only) Clears the RFTIMER_REG__COUNTER register. 0 = no clear and
1 = clear.

Register 3.18: RFTIMER_REG__COUNTER (0x42000004)

C
O
U
N
T

0 0

31 0

Reset

COUNT The counter for the timer.

126

Register 3.19: RFTIMER_REG__MAX_COUNT (0x42000008)

M
A
X
_
C
O
U
N
T

0 0

31 0

Reset

MAX_COUNT Holds the maximum value for the counter register, RFTIMER_REG__COUNTER.

Register 3.20: RFTIMER_REG__COMPAREi (0x42000010 + i*0x04)

C
O
M
PA
R
Ei

0 0

31 0

Reset

COMPAREi Holds the data for comparison to the counter register, RFTIMER_REG__COUNTER.

Register 3.21: RFTIMER_REG__COMPAREi_CONTROL (0x42000030 +
i*0x04)

R
X
_
ST
O
P_
EN
A
B
LE

0

5

R
X
_
ST
A
RT
_
EN
A
B
LE

0

4

T
X
_
SE
N
D
_
EN
A
B
LE

0

3

T
X
_
LO
A
D
_
EN
A
B
LE

0

2

IN
T
ER
R
U
PT
_
EN
A
B
LE

0

1

EN
A
B
LE

0

0

Reset

ENABLE Compare unit enable. The value in the RFTIMER_REG__COMPAREi is compared to the
value in RFTIMER_REG__COUNTER when enabled. 0 = compare unit disabled and 1 = compare
unit enabled.

INTERRUPT_ENABLE Interrupt enable. 0 = interrupt disabled and 1 = interrupt enabled.

TX_LOAD_ENABLE TX_LOAD output trigger enable. 0 = trigger output disabled and 1
= trigger output enabled.

TX_SEND_ENABLE TX_SEND output trigger enable. 0 = trigger output disabled and 1
= trigger output enabled.

RX_START_ENABLE RX_START output trigger enable. 0 = trigger output disabled and
1 = trigger output enabled.

RX_STOP_ENABLE RX_STOP output trigger enable. 0 = trigger output disabled and 1
= trigger output enabled.

127

Register 3.22: RFTIMER_REG__CAPTUREi (0x42000050 + i*0x04)

C
A
PT
U
R
Ei

0 0

31 0

Reset

CAPTUREi The counter register, RFTIMER_REG__COUNTER, is copied onto this register/�eld
when a capture is triggered.

Register 3.23: RFTIMER_REG__CAPTUREi_CONTROL (0x42000060 +
i*0x04)

C
LE
A
R

8

C
A
PT
U
R
E_
N
O
W

7

IN
PU
T
_
SE
L_
R
X
_
D
O
N
E

0

6

IN
PU
T
_
SE
L_
R
X
_
SF
D
_
D
O
N
E

0

5

IN
PU
T
_
SE
L_
T
X
_
SE
N
D
_
D
O
N
E

0

4

IN
PU
T
_
SE
L_
T
X
_
SF
D
_
D
O
N
E

0

3

IN
PU
T
_
SE
L_
T
X
_
LO
A
D
_
D
O
N
E

0

2

IN
PU
T
_
SE
L_
SO
FT
W
A
R
E

0

1

IN
T
ER
R
U
PT
_
EN
A
B
LE

0

0

Reset

INTERRUPT_ENABLE Interrupt enable. 0 = interrupt disabled and 1 = interrupt enabled.

INPUT_SEL_SOFTWARE Software capture input select. 0 = input disabled and 1 = input
enabled.

INPUT_SEL_TX_LOAD_DONE TX_LOAD_DONE capture input select. 0 = input
disabled and 1 = input enabled.

INPUT_SEL_TX_SFD_DONE TX_SFD_DONE capture input select. 0 = input dis-
abled and 1 = input enabled.

INPUT_SEL_TX_SEND_DONE TX_SEND_DONE capture input select. 0 = input
disabled and 1 = input enabled.

INPUT_SEL_RX_SFD_DONE RX_SFD_DONE capture input select. 0 = input dis-
abled and 1 = input enabled.

INPUT_SEL_RX_DONE RX_DONE capture input select. 0 = input disabled and 1 =
input enabled.

CAPTURE_NOW (Write-only) Triggers a capture event immediately. 0 = no capture and 1
= immediate capture.

CLEAR (Write-only) Clears the RFTIMER_REG__CAPTUREi register. 0 = no clear and 1 = clear.

128

Register 3.24: RFTIMER_REG__INT (0x42000070)

C
A
PT
U
R
E3
_
O
V
ER
FL
O
W

0

15

C
A
PT
U
R
E2
_
O
V
ER
FL
O
W

0

14

C
A
PT
U
R
E1
_
O
V
ER
FL
O
W

0

13

C
A
PT
U
R
E0
_
O
V
ER
FL
O
W

0

12

C
A
PT
U
R
E3
_
IN
T

0

11

C
A
PT
U
R
E2
_
IN
T

0

10

C
A
PT
U
R
E1
_
IN
T

0

9

C
A
PT
U
R
E0
_
IN
T

0

8

C
O
M
PA
R
E7
_
IN
T

0

7

C
O
M
PA
R
E6
_
IN
T

0

6

C
O
M
PA
R
E5
_
IN
T

0

5

C
O
M
PA
R
E4
_
IN
T

0

4

C
O
M
PA
R
E3
_
IN
T

0

3

C
O
M
PA
R
E2
_
IN
T

0

2

C
O
M
PA
R
E1
_
IN
T

0

1

C
O
M
PA
R
E0
_
IN
T

0

0

Reset

COMPARE0_INT Compare unit 0 interrupt �ag. 0 = no interrupt pending and 1 = interrupt
pending.

COMPARE1_INT Compare unit 1 interrupt �ag. 0 = no interrupt pending and 1 = interrupt
pending.

COMPARE2_INT Compare unit 2 interrupt �ag. 0 = no interrupt pending and 1 = interrupt
pending.

COMPARE3_INT Compare unit 3 interrupt �ag. 0 = no interrupt pending and 1 = interrupt
pending.

COMPARE4_INT Compare unit 4 interrupt �ag. 0 = no interrupt pending and 1 = interrupt
pending.

COMPARE5_INT Compare unit 5 interrupt �ag. 0 = no interrupt pending and 1 = interrupt
pending.

COMPARE6_INT Compare unit 6 interrupt �ag. 0 = no interrupt pending and 1 = interrupt
pending.

COMPARE7_INT Compare unit 7 interrupt �ag. 0 = no interrupt pending and 1 = interrupt
pending.

CAPTURE0_INT Capture unit 0 interrupt �ag. 0 = no interrupt pending and 1 = interrupt
pending.

CAPTURE1_INT Capture unit 1 interrupt �ag. 0 = no interrupt pending and 1 = interrupt
pending.

CAPTURE2_INT Capture unit 2 interrupt �ag. 0 = no interrupt pending and 1 = interrupt
pending.

CAPTURE3_INT Capture unit 3 interrupt �ag. 0 = no interrupt pending and 1 = interrupt
pending.

CAPTURE0_OVERFLOW Capture unit 0 over�ow �ag. 0 = no capture over�ow occurred
and 1 = capture over�ow occurred.

CAPTURE1_OVERFLOW Capture unit 1 over�ow �ag. 0 = no capture over�ow occurred
and 1 = capture over�ow occurred.

CAPTURE2_OVERFLOW Capture unit 2 over�ow �ag. 0 = no capture over�ow occurred
and 1 = capture over�ow occurred.

CAPTURE3_OVERFLOW Capture unit 3 over�ow �ag. 0 = no capture over�ow occurred
and 1 = capture over�ow occurred.

129

Register 3.25: RFTIMER_REG__INT_CLEAR (0x42000074)

C
A
PT
U
R
E3
_
O
V
ER
FL
O
W
_
C
LE
A
R

15

C
A
PT
U
R
E2
_
O
V
ER
FL
O
W
_
C
LE
A
R

14

C
A
PT
U
R
E1
_
O
V
ER
FL
O
W
_
C
LE
A
R

13

C
A
PT
U
R
E0
_
O
V
ER
FL
O
W
_
C
LE
A
R

12

C
A
PT
U
R
E3
_
IN
T
_
C
LE
A
R

11

C
A
PT
U
R
E2
_
IN
T
_
C
LE
A
R

10

C
A
PT
U
R
E1
_
IN
T
_
C
LE
A
R

9

C
A
PT
U
R
E0
_
IN
T
_
C
LE
A
R

8

C
O
M
PA
R
E7
_
IN
T
_
C
LE
A
R

7

C
O
M
PA
R
E6
_
IN
T
_
C
LE
A
R

6

C
O
M
PA
R
E5
_
IN
T
_
C
LE
A
R

5

C
O
M
PA
R
E4
_
IN
T
_
C
LE
A
R

4

C
O
M
PA
R
E3
_
IN
T
_
C
LE
A
R

3

C
O
M
PA
R
E2
_
IN
T
_
C
LE
A
R

2

C
O
M
PA
R
E1
_
IN
T
_
C
LE
A
R

1

C
O
M
PA
R
E0
_
IN
T
_
C
LE
A
R

0

COMPARE0_INT_CLEAR (Write-only) Compare unit 0 interrupt �ag clear. 0 = �ag un-
changed and 1 = �ag cleared.

COMPARE1_INT_CLEAR (Write-only) Compare unit 1 interrupt �ag clear. 0 = �ag un-
changed and 1 = �ag cleared.

COMPARE2_INT_CLEAR (Write-only) Compare unit 2 interrupt �ag clear. 0 = �ag un-
changed and 1 = �ag cleared.

COMPARE3_INT_CLEAR (Write-only) Compare unit 3 interrupt �ag clear. 0 = �ag un-
changed and 1 = �ag cleared.

COMPARE4_INT_CLEAR (Write-only) Compare unit 4 interrupt �ag clear. 0 = �ag un-
changed and 1 = �ag cleared.

COMPARE5_INT_CLEAR (Write-only) Compare unit 5 interrupt �ag clear. 0 = �ag un-
changed and 1 = �ag cleared.

COMPARE6_INT_CLEAR (Write-only) Compare unit 6 interrupt �ag clear. 0 = �ag un-
changed and 1 = �ag cleared.

COMPARE7_INT_CLEAR (Write-only) Compare unit 7 interrupt �ag clear. 0 = �ag un-
changed and 1 = �ag cleared.

CAPTURE0_INT_CLEAR (Write-only) Capture unit 0 interrupt �ag clear. 0 = �ag un-
changed and 1 = �ag cleared.

CAPTURE1_INT_CLEAR (Write-only) Capture unit 1 interrupt �ag clear. 0 = �ag un-
changed and 1 = �ag cleared.

CAPTURE2_INT_CLEAR (Write-only) Capture unit 2 interrupt �ag clear. 0 = �ag un-
changed and 1 = �ag cleared.

CAPTURE3_INT_CLEAR (Write-only) Capture unit 3 interrupt �ag clear. 0 = �ag un-
changed and 1 = �ag cleared.

CAPTURE0_OVERFLOW_CLEAR (Write-only) Capture unit 0 over�ow �ag clear. 0 =
�ag unchanged and 1 = �ag cleared.

CAPTURE1_OVERFLOW_CLEAR (Write-only) Capture unit 1 over�ow �ag clear. 0 =
�ag unchanged and 1 = �ag cleared.

CAPTURE2_OVERFLOW_CLEAR (Write-only) Capture unit 2 over�ow �ag clear. 0 =
�ag unchanged and 1 = �ag cleared.

CAPTURE3_OVERFLOW_CLEAR (Write-only) Capture unit 3 over�ow �ag clear. 0 =
�ag unchanged and 1 = �ag cleared.

130

3.36 compare_unit

3.36.1 Description

This module is part of the RFTIMERmodule, and implements the functionality for one
of its compare units. This module stores a compare value and generates interrupts
when the value of the counter from the RFTIMER module matches the compare value.
One of the interrupts is for the Cortex-M0, and the other four are triggers for the
state machines inside the RFcontroller module. The interrupt and trigger outputs
from this module are synchronous with the timer clock (TCLK). For more details on
the purpose and function of this module within the RFTIMER design, see section 3.35.

3.36.2 Input/Output Ports and Parameters

HRESETn Input reset.

HCLK System clock input.

TCLK Timer clock input.

HWDATA[COUNTER_WIDTH-1:0] Write data input. Used for AHB writes to the com-
pare and compare control registers.

count[COUNTER_WIDTH-1:0] Counter input from the RFTIMER module.

compare_wr_en Write enable input for the compare register.

compare_control_wr_en Write enable input for the compare control register.

tx_load_trigger Output to the RFcontroller module for the TX_LOAD trigger.

tx_send_trigger Output to the RFcontroller module for the TX_SEND trigger.

rx_start_trigger Output to the RFcontroller module for the RX_START trigger.

rx_stop_trigger Output to the RFcontroller module for the RX_STOP trigger.

compare[COUNTER_WIDTH-1:0] Compare register output. Used for AHB reads from
the compare register.

compare_control[5:0] Compare control register output. Used for AHB reads from
the compare control register.

compare_match Compare match output. Used for the interrupt to the Cortex-M0.

interrupt_en Interrupt enable output from the compare control register. Used for
the interrupt to the Cortex-M0.

COUNTER_WIDTH Parameter describing the width of the counter used for the timer.

131

3.36.3 Design Details

As with the RFTIMER module, all register names with the _t su�x indicate that the
register is connected to TCLK. All register names with the _h su�x indicate that the
register is connected to HCLK. A common pattern repeated throughout this design
is the use of a _h register written via the AHB and an accompanying _t register
sampling its value on every rising edge of TCLK.

This module has a pair of _t and _h registers for each bit in the compare
control register: ENABLE, INTERRUPT_ENABLE, TX_LOAD_ENABLE, TX_SEND_ENABLE,
RX_START_ENABLE, and RX_STOP_ENABLE. The _t registers for the compare con-
trol register are concatenated together to make the compare_control output. The
compare_t/compare_h pair stores the compare register value, and compare_t is
connected to the compare output.

The compare_match output is set to count == compare_t as long as the compare-
_enable_t register is high. Otherwise, the output stays low. Since both count

and compare_t are synchronous with TCLK, the compare_match output is also syn-
chronous with TCLK.

Each trigger output is the bitwise AND of the trigger's enable register and
compare_match. The enable registers and compare_match are synchronous with
TCLK, and therefore the trigger outputs are also synchronous with TCLK.

A schematic of the compare register, compare control registers, and trigger out-
puts is shown in Figure 3.26.

3.37 capture_unit

3.37.1 Description

This module is part of the RFTIMERmodule, and implements the functionality for one
of its capture units. This module monitors several interrupts, and stores the value
of the counter from the RFTIMER module when one of those interrupts is asserted.
One of these interrupts comes from the Cortex-M0 via the AHB, and the other �ve
come from the RFcontroller module. For more details on the purpose and function
of this module within the RFTIMER design, see section 3.35.

3.37.2 Input/Output Ports and Parameters

HRESETn Input reset.

HCLK System clock input.

TCLK Timer clock input.

HWDATA[8:0] Write data input. Used for AHB writes to the capture control register.

count[COUNTER_WIDTH-1:0] Counter input from the RFTIMER module.

capture_control_wr_en Write enable input for the capture control register.

tx_load_done_in Input from the RFcontroller module for the TX_LOAD_DONE in-
terrupt.

132

D Q

E

D Q

TCLKHCLK

D Q

E

D Q

TCLKHCLK

D Q

E

D Q

TCLKHCLK

D Q

E

D Q

TCLKHCLK

D Q

E

D Q

TCLKHCLK

D Q

E

D Q

TCLKHCLK

D Q

E

D Q

TCLKHCLK

compare_wr_en

HWDATA[TX_LOAD_ENABLE]

HWDATA[TX_SEND_ENABLE]

HWDATA[ENABLE]

HWDATA[RX_START_ENABLE]

HWDATA[RX_STOP_ENABLE]

HWDATA[INTERRUPT_ENABLE]

compare_control_wr_en

compare_control_wr_en

compare_control_wr_en

compare_control_wr_en

compare_control_wr_en

compare_control_wr_en

==
count

en

compare_match

tx_load_trigger

tx_send_trigger

rx_start_trigger

rx_stop_trigger

interrupt_en

HWDATA
compare_h

compare_enable_h

tx_load_enable_h

tx_send_enable_h

rx_start_enable_h

rx_stop_enable_h

interrupt_enable_h

compare_t

compare_enable_t

tx_load_enable_t

tx_send_enable_t

rx_start_enable_t

rx_stop_enable_t

interrupt_enable_t

Figure 3.26: Schematic for the compare_unit module.

133

tx_sfd_done_in Input from the RFcontroller module for the TX_SFD_DONE inter-
rupt.

tx_send_done_in Input from the RFcontroller module for the TX_SEND_DONE in-
terrupt.

rx_sfd_done_in Input from the RFcontroller module for the RX_SFD_DONE inter-
rupt.

rx_done_in Input from the RFcontroller module for the RX_DONE interrupt.

capture_trigger Capture trigger output. Used for the interrupt to the Cortex-M0.

capture[COUNTER_WIDTH-1:0] Capture register output. Used for AHB reads from
the capture register.

capture_control[6:0] Capture control register output. Used for AHB reads from
the capture control register.

interrupt_en Interrupt enable output from the capture control register. Used for
the interrupt to the Cortex-M0.

COUNTER_WIDTH Parameter describing the width of the counter used for the timer.

3.37.3 Design Details

As with the RFTIMER module, all register names with the _t su�x indicate that the
register is connected to TCLK. All register names with the _h su�x indicate that the
register is connected to HCLK. A common pattern repeated throughout this design
is the use of a _h register written via the AHB and an accompanying _t register
sampling its value on every rising edge of TCLK.

This module has a pair of _t and _h registers for each read-write bit in the cap-
ture control register: INTERRUPT_ENABLE, INPUT_SEL_SOFTWARE, INPUT_SEL_TX-
_LOAD_DONE, INPUT_SEL_TX_SFD_DONE, INPUT_SEL_TX_SEND_DONE, INPUT_SEL_RX-
_SFD_DONE, and INPUT_SEL_RX_DONE. The _t registers for the capture control regis-
ter are concatenated together to make the capture_control output. The CAPTURE-
_NOW and CLEAR bits are write enable signals for the capture register, and are not
part of the capture_control output, as they are write-only bits in the register.

The capture_trigger signal is the bitwise OR of all the possible capture in-
terrupts after their bitwise AND with the corresponding input select signals. The
capture_h register is updated with the count register value when capture_trigger

is high on the rising edge of HCLK. The capture_h register is also cleared when the
CLEAR bit of the control register is written and capture_clear_en is high. If both
capture_trigger and capture_clear_en are asserted, the trigger takes precedence
and the count value is copied into capture_h.

The capture register, capture_h, uses a synchronous enable to store the counter
value. The synchronous enable imposes the requirement that the interrupt input
is high for at least 1 clock cycle. The capture register is attached to the system
clock (HCLK) and all input pulses must be asserted for at least 1 system clock cycle.
An asynchronous alternative is to attach the interrupt inputs directly to the clock
input of the capture_h register. However, this method carries the risk of capturing

134

D Q

E

D Q

TCLKHCLK

D Q

E

D Q

TCLKHCLK

D Q

E

D Q

TCLKHCLK

D Q

E

D Q

TCLKHCLK

D Q

E

D Q

TCLKHCLK

D Q

E

D Q

TCLKHCLK

D Q

E

D Q

TCLKHCLK

input_sel_software_t

input_sel_tx_load_done_t

input_sel_tx_sfd_done_t

input_sel_tx_send_done_t

input_sel_rx_sfd_done_t

input_sel_rx_done_t

interrupt_enable_t

tx_load_done_in

tx_sfd_done_in

tx_send_done_in

rx_sfd_done_in

rx_done_in

capture_control_wr_en

capture_control_wr_en

capture_control_wr_en

capture_control_wr_en

capture_control_wr_en

capture_control_wr_en

capture_control_wr_en

capture_control_wr_en

HWDATA[INPUT_SEL_INTERRUPT_ENABLE]

HWDATA[INPUT_SEL_SOFTWARE]

HWDATA[INPUT_SEL_TX_LOAD_DONE]

HWDATA[INPUT_SEL_TX_SFD_DONE]

HWDATA[INPUT_SEL_TX_SEND_DONE]

HWDATA[INPUT_SEL_RX_SFD_DONE]

HWDATA[INPUT_SEL_RX_DONE]

capture_nowHWDATA[CAPTURE_NOW]

D Q

E

HCLK

HWDATA[CLEAR]

capture_control_wr_en
capture_clear_en

capture_clear_en

capture_trigger

count 1
0

capture_trigger

0

capture_h / capture

interrupt_enable

input_sel_software_h

input_sel_tx_load_done_h

input_sel_tx_sfd_done_h

input_sel_tx_send_done_h

input_sel_rx_sfd_done_h

input_sel_rx_done_h

interrupt_enable_h

Figure 3.27: Schematic for the capture_unit module.

the counter as the value is changing, leading to metastability. This method is also
not recommended on FPGAs as it requires connecting several non-clock signals to
dedicated clock nets. Given the intended use of this module, to capture only when
directed by the Cortex-M0 or through the RFcontroller module, both synchronous
with the system clock, the former method is acceptable.

A schematic of the capture register and capture control registers is shown in
Figure 3.27.

3.38 AHB2APB

3.38.1 Description

This module is designed by Bigazzi to act as a bridge connecting the AHB and the
APB buses. This module is the master of the APB bus, and creates all of the APB
master signals sent to the APBMUX and all APB slaves.

3.38.2 Input/Output Ports

HCLK Input clock. Used on both AHB and APB interfaces.

HRESETn Input reset. Used on both AHB and APB interfaces.

HADDR[31:16] AHB input address. Since the APB is a 16-bit bus, only the 16
upper bits of HADDR are needed. The rest are omitted.

HTRANS[1] AHB transfer type input.

135

HWRITE AHB write select input.

HWDATA[15:0] AHB write data input. Since the APB is a 16-bit bus, only the 16
lower bits of HWDATA used. The rest are omitted.

HSEL AHB slave select input.

HREADY AHB transfer �nished input. This input indicates that the previous transfer
on the bus has �nished and that address phase signals must be latched.

HRDATA[31:0] AHB read data output.

HREADYOUT AHB transfer �nished output.

PADDR[15:0] APB address output.

PENABLE APB access phase enable output.

PWRITE APB write select output.

PWDATA[15:0] APB write data output.

PRDATA[15:0] APB read data input.

PREADY APB transfer �nished input.

3.38.3 Design Details

This module operates in three states, ST_IDLE, ST_SETUP, ST_ACCESS. During the
ST_IDLE state, the bridge waits for an AHB transfer addressing one of the APB pe-
ripherals. Once a transfer is detected, the bridge latches the AHB address phase sig-
nals, and changes to the ST_SETUP state. This state corresponds to the setup phase
of the APB transfer. Meanwhile, the AHB master is stalled by setting HREADYOUT

to 0. After the ST_SETUP state is the ST_ACCESS state, corresponding to the access
phase of the APB transfer. The bridge stays in this state until the slave indicates
the state is complete using PREADY. All of the APB slave signals are also routed
to the AHB master, as the APB access phase is the same as the AHB data phase.
Once the transfer is complete, the bridge transitions to the ST_SETUP phase if there
is another AHB transfer, or transitions to the ST_IDLE state if there are no more
AHB transfers.

3.39 APBMUX

3.39.1 Description

This module is designed by Bigazzi to determine which APB slave is being ac-
cessed and route the correct set of slave signals to the APB master. It also decodes
HADDR[31:24] to generate a PSEL signal for each slave. This module currently sup-
ports four APB slaves; however, with modi�cations this module may support any
number of APB slaves.

136

3.39.2 Input/Output Ports

PADDR[15:8] Address input. Only the 8 upper bits are necessary and the other bits
are omitted.

PRDATA0[15:0] Read data input from the �rst APB slave. In the Single Chip Mote
digital system this is the APBADC_V2 module.

PREADY0 Transfer �nished input from the �rst APB slave. In the Single Chip Mote
digital system this is the APBADC_V2 module.

PRDATA1[15:0] Read data input from the second APB slave. In the Single Chip
Mote digital system this is the APBUART module.

PREADY1 Transfer �nished input from the second APB slave. In the Single Chip
Mote digital system this is the APBUART module.

PRDATA2[15:0] Read data input from the third APB slave. In the Single Chip
Mote digital system this is the APB_ANALOG_CFG module.

PREADY2 Transfer �nished input from the third APB slave. In the Single Chip Mote
digital system this is the APB_ANALOG_CFG module.

PRDATA3[15:0] Read data input from the fourth APB slave. In the Single Chip
Mote digital system this is the APBGPIO module.

PREADY3 Transfer �nished input from the fourth APB slave. In the Single Chip
Mote digital system this is the APBGPIO module.

PRDATA[15:0] Read data output to the APB master.

PREADY Transfer �nished output to the APB master.

PSEL0 Slave select output for the �rst APB slave. In the Single Chip Mote digital
system this is the APBADC_V2 module.

PSEL1 Slave select output for the second APB slave. In the Single Chip Mote digital
system this is the APBUART module.

PSEL2 Slave select output for the third APB slave. In the Single Chip Mote digital
system this is the APB_ANALOG_CFG module.

PSEL3 Slave select output for the fourth APB slave. In the Single Chip Mote digital
system this is the APBGPIO module.

3.39.3 Design Details

This module only contains combinational logic to set the PSEL outputs and choose
the correct slave inputs for PRDATA and PREADY using the 8 upper bits of HADDR.
This is done using a case statement with the pre�xes de�ned in REGISTERS.vh.

137

3.39.4 Adding Another APB Slave

Adding a new APB slave in this module requires the following steps:

1. De�ne an address pre�x for the slave in REGISTERS.vh.

2. Add another PSEL output.

3. Add another PRDATA input.

4. Add another PREADY input

5. Add another case to the case statement using the new address pre�x. Assign
the new PSEL output. Assign PRDATA and PREADY.

6. Connect the new PSEL output to the new slave/peripheral in the top module,
uCONTROLLER.

7. Connect the new PRDATA and PREADY inputs to the new slave/peripheral in
the top module, uCONTROLLER.

3.40 APBUART

3.40.1 Description

This module is a slightly modi�ed version of the AHBUART module provided in the
DesignStart kit. Bigazzi adapted the original code to be used on the APB bus
instead of the AHB, and parameterized the section of the code used to send data at
the appropriate baud rate.

The APBUART module implements a 3-wire serial interface. The data is transmit-
ted in individual data frames containing one start bit, 8 data bits, 1 stop bit, and
no extra parity bits. This module also does not implement any �ow control. The
baud rate is determined based on the UARTBAUDGEN parameter in SYS_PROP.vh, and
is currently set to 19200. The Nexys 4 DDR board has support for RTS/CTS �ow
control. However, this module does not have any �ow control logic since the original
AHBUART module was created for the Nexys 3 board (which does not support �ow
control).

To send a byte, write to the UART_REG__TX_DATA register. To read received data,
read from the UART_REG__RX_DATA register. When the module receives one or more
bytes of data, the interrupt to the Cortex-M0 is asserted. This interrupt remains
active until all received data is read.

3.40.2 Input/Output Ports and Parameters

HCLK Input clock.

HRESETn Input reset.

PADDR[15:0] Address input.

PWDATA[7:0] Write data input. Only the 8 lower bits are used because this UART
interface has 8 data bits.

138

PENABLE Access phase enable input.

PSEL Slave select input.

PWRITE Write select input.

PRDATA[15:0] Read data output. The upper 8 bits are always 0 since this UART
interface has 8 data bits.

PREADYOUT Transfer �nished output.

RsRx The receive input for UART.

RsTx The transmit output for UART.

uart_irq Interrupt output to the Cortex-M0.

CLK_FREQ Parameter describing the frequency of HCLK in Hz. This is used with the
UARTBAUDGEN parameter to send data at the correct baud rate and sample the
input data at the correct rate.

UARTBAUDGEN Parameter used to describe the target baud rate. This is used with
the CLK_FREQ parameter to send data at the correct baud rate and sample the
input data at the correct rate.

3.40.3 Design Details

The main section of this module modi�ed by Bigazzi is the APB interface, previously
the AHB interface of the AHBUART module in the DesignStart kit. This module
instantiates four submodules, also provided as part of the DesignStart kit:

BAUDGEN This submodule is used to generate a one-cycle tick at a speci�ed baud rate.
This is accomplished with a counter used to generate a one-cycle tick when the
counter reaches its maximum value. The maximum value is parameterized such
that the frequency of ticks matches the baud rate. This module requires the
UARTBAUDGEN and CLK_FREQ parameters in order to determine the maximum
value of the counter.

FIFO This submodule (instantiated twice in APBUART) is for the FIFOs used to store
outgoing Tx data and incoming Rx data.

UART_RX This module contains the logic and state machine used to sample the RsRx
input, and write the data into the Rx FIFO. Unfortunately, this module is not
the most ideal design, as it does not oversample the input.

UART_TX This module contains the logic and state machine used to toggle the RsTx
output and send the data stored in the Tx FIFO.

All APB write transfers to this module, regardless of the address, store data into
the Tx FIFO. If this FIFO has data, then the logic in UART_TX reads the data out of
the FIFO and sends it through RsTx. Meanwhile, the UART_RX module samples the
level on RsRx to listen for incoming data. This module then stores the data in the
Rx FIFO. If the Rx FIFO has data, then the uart_irq interrupt to the Cortex-M0
is asserted. All APB read transfers from this module, regardless of address, read
data from the Rx FIFO. Once this FIFO is empty, the interrupt is de-asserted.

139

3.40.4 Register Interface

UART TX Data

The UART_REG__TX_DATA register is an 8-bit write-only memory-mapped register
used to write one symbol to be transmitted over UART to the TX FIFO. Any APB
write to the APBUART module is a write to this register and to the TX FIFO. There
is no feedback to indicate that this FIFO is full; any APB writes to the FIFO when
it is full are ignored. It is up to the software on the Cortex-M0 to ensure that it
does not write to the FIFO faster than the data is transmitted over UART.

UART RX Data

The UART_REG__RX_DATA register is an 8-bit read-only memory-mapped register that
reads one symbol of received UART data from the RX FIFO. Any APB read from the
APBUART module is a read from this register and from the RX FIFO. The uart_irq
indicates that there is data in this FIFO. APB reads from the FIFO when it is empty
return invalid data.

Register Descriptions

Register 3.26: UART_REG__TX_DATA (0x51000000)

T
X
_
D
AT
A

7 0

TX_DATA (Write-only) Next UART symbol to write to the TX FIFO and transmit. Ignored
if the FIFO is full.

Register 3.27: UART_REG__RX_DATA (0x51040000)

R
X
_
D
AT
A

x x x x x x x x

7 0

Reset

RX_DATA (Read-only) Next received UART symbol in the RX FIFO. Data is invalid if the
FIFO is empty.

3.41 APBADC_V2

3.41.1 Description

This module is the digital interface to the analog-to-digital converter (ADC) de-
signed by David Burnett for the Single Chip Mote. This module controls a series of
inputs that activate and control the ADC; these inputs are toggled using an internal

140

state machine. The 10-bit result of the ADC is saved onto a register after the con-
version is complete. This module also asserts an interrupt to the Cortex-M0 when
a conversion is complete. The Verilog for this module is also designed by David
Burnett.

3.41.2 Input/Output Ports

HCLK Input clock.

HRESETn Input reset.

PSEL Slave select input.

PENABLE Access phase enable input.

PWRITE Write select input.

PWDATA[0:0] Write data input. This is only 1 bit since the only writeable register
has 1 bit.

PADDR[15:0] Address input.

PRDATA[15:0] Read data output.

PREADYOUT Transfer �nished output.

adc_int Interrupt output to the Cortex-M0.

adc_din[9:0] Digital input from the ADC.

adc_done Input from the ADC indicating that the conversion is complete.

adc_reset Output control signal to the ADC.

adc_clken Output control signal to the ADC.

adc_load Output control signal to the ADC.

adc_cdig Output control signal to the ADC.

adc_cvin Output control signal to the ADC.

adc_cvref Output control signal to the ADC.

3.41.3 Design Details

Writing a 1 to the ADC_REG__START register sets the conversion_started register
that triggers the internal state machine. Once the state machine is �nished, the
done signal is asserted for one cycle. The done signal is used as the interrupt output
to the Cortex-M0, adc_int. For more details on the exact function of the state
machine, see David Burnett. The higher-level use of this module, through the APB
interface, is the same regardless of ADC architecture or state machine details, and
is explained in the following section.

141

3.41.4 Register Interface

Writing a 1 to the 1-bit ADC_REG__START register triggers the beginning of the
conversion. This register stays set until the conversion is complete, regardless of any
other APB writes to the ADC_REG__START register. Reading this register indicates
whether or not a conversion is in progress.

The converted data is read through the read-only 10-bit ADC_REG__DATA register.
This register is updated at the end of every conversion.

Register Descriptions

Register 3.28: ADC_REG__START (0x50000000)

co
nv
er
sio
n_
st
ar
te
d

0

0

Reset

conversion_started Reading this bit indicates if a conversion is in progress. Writing a 1 to
this bit begins a conversion if one is not already in progress. Writing a 0 to this bit has no
e�ect.

Register 3.29: ADC_REG__DATA (0x50040000)

co
nv
er
te
d_
da
ta

0 0 0 0 0 0 0 0 0 0

9 0

Reset

converted_data Converted ADC value.

3.42 APB_ANALOG_CFG

3.42.1 Description

This module contains a parameterizable amount of 16-bit programmable registers
used to con�gure any analog circuits on the Single Chip Mote. These registers are
connected to outputs in the top module. On an FPGA these are connected to
actual output pins, but on an ASIC they are not connected to any external pins.
Instead they are connected directly to the analog circuit requiring con�guration. The
number of 16-bit registers is parameterized in order to accommodate an unknown
number of required con�guration outputs. All con�guration registers are exactly 16
bits wide.

142

3.42.2 Input/Output Ports

HCLK Input clock.

HRESETn Input reset.

PSEL Slave select input.

PENABLE Access phase enable input.

PWRITE Write select input.

PWDATA[15:0] Write data input.

PADDR[15:0] Address input.

PRDATA[15:0] Read data output.

PREADYOUT Transfer �nished output.

ANALOG_CFG[(NUM_REGISTERS)-1:0] Con�guration register output. All con�gura-
tion registers are concatenated into one bus, with the registers in order from
the lowest address (in the lowest 16 bits) to the highest address (in the highest
16 bits), with the bits of each register in order of LSB to MSB.

NUM_REGISTERS Parameter describing the total number of 16-bit con�guration reg-
isters.

3.42.3 Design Details

The module creates an array of 16-bits registers with depth equal to NUM_REGISTERS.
The following generate statement is used to handle APB writes to each of the reg-
isters using the NUM_REGISTERS parameter:

genvar i;

generate

for (i = 0; i < NUM_REGISTERS; i = i + 1) begin : analog_cfg_reg_gen

always @ (posedge HCLK or negedge HRESETn) begin

if (! HRESETn) analog_cfg_reg[i] <= 16'h0000;

else if(PSEL & PWRITE & PENABLE)

if (PADDR [15:0] == (`APB_BASE__ANALOG_CFG + (i*16'h04))) analog_cfg_reg[i]

<= PWDATA;

end

end

endgenerate

The following for loop is used to create the multiplexer used to assign PRDATA

during an APB read:

integer j;

always @(*) begin

rPRDATA = 16'h0000;

for (j = 0; j < NUM_REGISTERS; j = j + 1) begin : apb_read

if (PADDR [15:0] == (`APB_BASE__ANALOG_CFG + (j*16'h04))) rPRDATA =

analog_cfg_reg[j];

end

end

143

The following for loop is used to concatenate all of the con�guration registers
into the single ANALOG_CFG output:

integer k;

always @(*) begin

rANALOG_CFG = 0;

for (k = 0; k < NUM_REGISTERS; k = k + 1) begin : r_analog_cfg

rANALOG_CFG[k*16 +: 16] = analog_cfg_reg[k];

end

end

The [k*16 +: 16] syntax is called index part-select, where the �rst term,
k*16, is the bit o�set (the LSB), and the second term, 16, is the width added to
the o�set to determine the MSB. This is equivalent to the following expression:
[((k+1)*16)-1:k*16]; however this expression is illegal in Verilog.

3.42.4 Register Interface

Analog Con�g i Register

The ANALOG_CFG_REG__i register is a 16-bit register corresponding to the ith analog
con�guration register, where i ranges from 0 to NUM_REGISTERS-1. The 16 bits in
this register are connected to the ANALOG_CFG[16*(i+1)-1:16*i] output signals.
Writing a 1 to a bit in this register drives the corresponding output high, and writing
a 0 to a bit in this register drives the corresponding output low. Reading this register
returns the current state of the ANALOG_CFG[16*(i+1)-1:16*i] outputs.

Register Descriptions

Register 3.30: ANALOG_CFG_REG__0 (0x52000000)

co
n�
g0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0

Reset

con�g0 Con�guration register 0 output voltage. For each bit, 0 = low/ground and 1 = high/vdd.

3.43 APBGPIO

3.43.1 Description

This module is an interface for up-to 16 general-purpose digital inputs and up-to 16
general purpose digital outputs. The inputs may be used for buttons and switches
on the FPGA board, or any kind of digital input on an ASIC. The outputs may be
used to drive LEDs on the FPGA board, or any kind of digital output on an ASIC.
The number of inputs and outputs are parameterized in order to accommodate
an unknown number of pins available on the FPGA or ASIC. The current design
includes inputs and 4 outputs.

144

3.43.2 Input/Output Ports and Parameters

HCLK Input clock.

HRESETn Input reset.

PSEL Slave select input.

PADDR[15:0] Address input.

PENABLE Access phase enable input.

PWRITE Write select input.

PWDATA[15:0] Write data input.

PRDATA[15:0] Read data output.

PREADYOUT Transfer �nished output.

gp_in[NUM_INPUTS-1:0] General-purpose digital input.

gp_out[NUM_OUTPUTS-1:0] General-purpose digital output.

NUM_INPUTS Parameter de�ning the number of digital inputs.

NUM_OUTPUTS Parameter de�ning the number of digital outputs.

3.43.3 Design Details

The number of inputs and outputs are parameterizable because the number of avail-
able pins on the ASIC version of this design is currently unknown. The maximum
number of inputs and outputs is 16 bits each to allow for all inputs to be read us-
ing one APB transfer and all outputs to be written using one APB transfer. It is
highly unlikely that there will be a need for more inputs or outputs given the limited
number of pins available on ASIC designs.

The gp_in inputs are sampled during the setup phase of an APB read transfer,
indicated by the following boolean expression: PSEL & ~PWRITE & ~PENABLE. This
way the sampled input is ready during the �rst cycle of the access phase. On the
other hand, the new values are written to gp_out during the �rst cycle of the access
phase. In both cases the APB transfers take only two cycles.

3.43.4 Register Interface

General Purpose Input Register

The APBGPIO_REG__INPUT register is a read-only register with a width of NUM_INPUTS.
Each bit in this register corresponds to one of the general-purpose digital inputs.
Each bit reads 0 when the input is low and 1 when the input is high.

145

General Purpose Output Register

The APBGPIO_REG__OUTPUT register is a read-write register with a width of NUM_OUT-
PUTS. Each bit in this register corresponds to one of the general-purpose outputs.
Writing a 1 to a bit in this register drives the corresponding output high, and writing
a 0 to a bit in this register drives the corresponding output low. Reading this register
returns the current state of the outputs.

Register Descriptions

Register 3.31: APBGPIO_REG__INPUT (0x53000000)

gp
_
in

x x x x

3 0

Reset

gp_in (Read-Only) Input voltage of the general-purpose inputs 0-3. For each bit, 0 = low/-
ground and 1 = high/vdd.

Register 3.32: APBGPIO_REG__OUTPUT (0x53040000)

gp
_
ou
t

0 0 0 0

3 0

Reset

gp_out Output voltage for the general-purpose outputs 0-3. For each bit, 0 = low/ground and
1 = high/vdd.

3.44 chipscope_debug

chipscope_debug.cdc is ChipScope de�nition and connection �le. ChipScope is a
tool from Xilinx used to sample signals from within a design as it is running on the
FPGA. The module that samples these signals is referred to as an integrated logic
analyzer (ILA). This tool is typically used for debugging purposes.

In order to make it easier to connect signals to the ILA, the Synthesis process
needs to be modi�ed to preserve module hierarchy. When hierarchy is not preserved,
signals and nets are combined and renamed, making them much more di�cult to
�nd when selecting nets to connect to the ILA. To preserve hierarchy, go to the
Synthesis process properties, and change the Keep Hierarchy option to Yes.

To connect signals to the ILA, �rst synthesize the design. Then, double-click the
chipscope_debug.cdc �le in the Design Hierarchy panel. If there is no ChipScope
de�nition and connection �le in the design, create one using the New Source option
in the Project menu. Then open the CDC �le.

Follow the prompts and directions to create a new ILA unit, if one does not
exist. There are three tabs with settings to con�gure the ILA unit. These tabs
are Trigger Parameters, Capture Parameters, and Net Connections. The Trigger

146

Parameters tab is used to con�gure how many signals to monitor for triggers. There
can be multiple trigger units for multiple triggers. The Capture Parameters tab
is used to determine how many data signals to sample (these can be the same as
the triggers or di�erent), and how many samples to take after a trigger. The Net
Connections tab is used to connect nets in the design to the trigger and data ports
of the ILA, as well as specify the sampling clock. Beware that the ILA module
uses block RAM resources on the FPGA, and it is possible to exceed the amount of
resources available.

After all of the ILA inputs have been connected, the design can be implemented
and a bitstream �le generated. The ChipScope Pro software can be used to load the
bitstream onto the FPGA and access the ILA unit inside the design.

For a more complete tutorial on using ChipScope, see the following tutorial from
Xilinx: Using Xilinx ChipScope Pro ILA Core with Project Navigator to Debug
FPGA Applications [16]. A copy is found in scm-digital/doc.

3.45 Deprecated Modules

This section contains information on deprecated Verilog modules or modules gener-
ated in Coregen for Single Chip Mote on the Artix-7 and uRobotDigitalController
on the Spartan-6. Some of these modules are found in the ISE project �les for both
the Artix-7 and Spartan-6 versions, some are only in the Spartan-6 project, and
some of them have been removed from the project �les. The Verilog code remains
in the scm-digital/src/hw/ folder.

The following sections describe the origin, function, and purpose of these mod-
ules, the reason why they are considered deprecated, and any possible uses for these
modules in the future. This section does not go into detail on how these modules
accomplish (or do not accomplish) their intended function.

3.45.1 clk_div22

This module was created by Bigazzi using a copy of the code generated by Coregen
for a clock divider. This module was used in uRobotDigitalController to divide
the 100MHz clock to 5MHz using FPGA clocking primitives. This module was
deprecated because it was replaced by the PON module, which accomplishes the
same function while also handling resets. This module is most likely not be needed
for future designs.

3.45.2 pb_debounce

This module was provided by ARM as part of the ARM Cortex-M0 DesignStart kit
(see section 2.2 for more information) in order to act as a push-button debouncer for
the buttons on the Nexys 3 board. This module was removed from the Single Chip
Mote and uRobotDigitalController projects because the FPGA button inputs (aside
from the reset button which has its own debouncing module) have been removed
from the design. This removal was done to make the design closer to the ASIC
version of the Single Chip Mote, which does not have many external IOs and most
likely will not use any buttons. This module can be used for any future designs on
FPGAs if buttons are needed.

147

3.45.3 DMA

This is the original DMA module designed by Bigazzi, with further modi�cations
added before its eventual deprecation. This module was deprecated because it was
designed to interface with an older version of the RFcontroller and ADC and requires
many changes to make it compatible with the new designs. This module is most
likely not be needed in the future, and any updates to the DMA should be done to
DMA_V2 or a new DMA module should be created.

3.45.4 AHBTIMER

This module was designed by Bigazzi to be a timer for the Single Chip Mote. This
module was deprecated because it was found unnecessary when the RFTIMER module
was used instead, and keeping both modules was seen as excessive. However, the
RFTIMER module was designed to be speci�cally used for the RFcontroller, and this
timer may be better suited for other microcontroller applications. Therefore this
module can be used in future designs if another, more generalized, timer is needed.

3.45.5 AHB2LED

This module was provided by ARM as part of the ARM Cortex-M0 DesignStart kit
(see section 2.2 for more information) in order to act as an interface to the LEDs on
the Nexys 3 board. This module was removed from the design because LEDs have
been removed from the design. This removal was done to make the design closer to
the ASIC version of the Single Chip Mote, which does not have many external IOs
and most likely will not have any programmable LED outputs. One of the outputs
from the AHBGPIO module can be used as a programmable LED output instead. This
module can be used on future designs with FPGAs if LEDs are needed.

3.45.6 AHB2MEM_V2

This module was provided by ARM as part of the ARM Cortex-M0 DesignStart
kit (see section 2.2 for more information) in order to act as an interface to the
data memory on the FPGA. This module was slightly modi�ed by Bigazzi to use a
synchronous read in order to use the block RAM on the FPGA. This module was
depreciated because it was replaced with the AHBDMEM module, containing almost the
exact same code except for the use of an instantiated RAM instead of an inferred
RAM. This was done to bring the design closer to the ASIC version, which also
uses instantiated RAM rather than inferred RAM. This module is most likely not
be needed for any future designs.

3.45.7 AHB2SRAMFLSH

This module was provided by ARM as part of the ARM Cortex-M0 DesignStart
kit (see section 2.2 for more information) in order to act as an interface to the in-
struction memory on the FPGA. This instruction memory was stored on an external
RAM rather than an internal RAM, to make it easier to load the software for the
ARM Cortex-M0 DesignStart kit using Digilent Adept. This module was depricated
because fetching instructions from the external RAM was much slower than using

148

the internal RAM, thus necessitating the creation of the AHBIMEM module along with
the bootloader. Also, this external RAM is only found on the Nexys 3 board and
not the Nexys 4 DDR. Therefore, this module is most likely not be needed for any
future designs.

3.45.8 AHB2SRAMFLSH_V2

This module is a modi�ed version of AHB2SRAMFLSH meant to speed up instruction
fetches from the external RAM. This module was deprecated for the same reason as
AHB2SRAMFLSH and is most likely not be needed for any future designs.

3.45.9 AHB2SRAMFLSH_V3

This module is a modi�ed version of AHB2SRAMFLSH_V2. The external RAM inter-
face is used to fetch all instructions from the external RAM and store them into
internal RAM. This module was a preliminary bootloader that loaded the data
from the external RAM instead of the 3 Wire Bus (see chapter 5 for more informa-
tion on the actual bootloader). This module was deprecated for the same reason
as AHB2SRAMFLSH and AHB2SRAMFLSH_V2 and is most likely not be needed for any
future designs.

3.45.10 AHBROM

This module is a heavily modi�ed version of AHB2MEM_V2 used to demonstrate that
instruction data could be read from an instantiated ROM (rather than from internal
or external RAM). This module was depricated because the AHBIMEM module was
created to hold the instruction ROM, instruction RAM, and all bootloading logic.
This module is most likely not be needed for any future designs.

3.45.11 AHB_MASTER_MUX

This module was designed by Bigazzi in order to act as a bus arbiter for the AHB,
allowing for multiple masters to control one AHB bus. This module was depre-
cated because it was shown that the module did not function as intended and it
was di�cult to �nd the cause of this problem. The module was replaced with
AHBLiteArbiter_V2, and is most likely not be needed for any future designs.

3.45.12 startSymbolDetect

This module was created as a precursor to the correlator for the RFcontroller.
Prior to adding the spreading and despreading functions, the data bits were sent
without any encoding, and this module was used to detect the packet start symbol
in a stream of received bits. This module was deprecated because the correlator

module was created to detect the packet start symbol in a stream of encoded bits.
This module is most likely not be needed for any future designs.

149

3.45.13 APBADC

This module was designed by Bigazzi as a controller for a SAR ADC circuit he
designed on a breadboard. This module was depreciated because this particular
ADC circuit is no longer in use and a new ADC was designed for the Single Chip
Mote. A new controller, APBADC_V2 was written for this new ADC. This module is
most likely not be needed for any future designs.

3.45.14 APBTSCHTimer

This module was designed by Bigazzi to be a timer for the Single Chip Mote. This
module was deprecated because it was found unnecessary when the RFTIMER was
used instead, and keeping both modules was seen as excessive. However, the RFTIMER
was designed to be speci�cally used for the RFcontroller, and this timer may be
better suited for other microcontroller applications. Therefore this module can be
used in future designs if another, more generalized, timer is needed.

3.45.15 APB_PWM_simple

This module was designed by Bigazzi to be a programmable PWM output from the
Single Chip Mote. This module was deprecated because a PWM output is currently
not needed and was seen as excessive. However, this module may be useful in future
iterations of the Single Chip Mote for microcontroller applications.

3.45.16 APBDO

This module was designed to be a simple digitally-controlled output from the Nexys
3 board. This module was removed from the design because the outputs from the
APBGPIO module perform the same function, and the APBGPIO module is parameter-
izable. This module is most likely not be needed for any future designs.

3.45.17 APBLED

This module was designed to be an interface to the LEDs on the Nexys 3 board.
This module was removed from the design because LEDs have been removed from
the design. This removal was done to make the design closer to the ASIC version of
the Single Chip Mote, which does not have many external IOs and most likely will
not have any programmable LED outputs. One of the outputs from the AHBGPIO

module can be used as a programmable LED output instead. This module can be
used on future designs with FPGAs if LEDs are needed.

3.45.18 APBSW

This module was designed to read the input from the switches on the Nexys 3
board. This module was removed from the design because switch inputs have been
removed from the design. This removal was done to make the design closer to the
ASIC version of the Single Chip Mote, which does not have many external IOs and
most likely does not have any switch inputs. One of the inputs to the AHBGPIO

150

module can be used as an input for a switch instead. This module can be used on
future designs with FPGAs if switches are needed.

151

Chapter 4

Single Chip Mote Software

This chapter provides an overview of the Single Chip Mote digital system software
and software development tools. While the majority of the work on the Single Chip
Mote is focused on hardware design, the overall goal of this project is to work in col-
laboration with software developers to design a platform ideal for Internet of Things
(IoT) applications. In particular, the Single Chip Mote team is collaborating with
the developers of OpenWSN [26], an open-source protocol stack designed for IoT.
With their advanced embedded systems experience, the developers of OpenWSN
can provide feedback for hardware improvements while they port OpenWSN onto
the Single Chip Mote. Through the use of FPGAs, hardware changes can quickly be
veri�ed, �ne-tuned, and integrated into the software. The information in this chap-
ter contains the basics for writing software that uses the digital system peripherals
in order to facilitate application development.

4.1 Keil Project Settings

Keil projects have already been created for the main software running on the Cortex-
M0 and the basic �rmware (chapter 5) used to load the main software onto the Single
Chip Mote digital system. However, it may be necessary in the future to create new
projects for di�erent applications or variations of the Single Chip Mote hardware.
This section contains the information needed to create a new project in Keil uVision
5 for the ARM Cortex-M0 on the Single Chip Mote digital system.

4.1.1 New Project and Device Selection

To create a new project, open Keil uVision 5 and select the New uVision Project...
option in the Project menu. This will bring up the Device Selection, displaying all of
the ARM cores supported by the IDE. The device for the Single Chip Mote digital
system is found under ARM > ARM Cortex M0 > ARMCM0, as shown in Figure
4.1. Select ARMCM0 and then select Next.

The Manage Runtime Environment window in Figure 4.2 displays options for
including additional software drivers from ARM. The default settings are su�cient
for the Single Chip Mote. Select OK to �nish creating the project.

152

Figure 4.1: Device selection window in Keil

Figure 4.2: Manage Runtime Environment window in Keil

153

4.1.2 Target Options

The Target Options window contains the settings that describe the memory re-
sources on the device, the compiler and linker options, and the debug options. To
access the Target Options window, right-click Target 1 in the Project panel, and
select Options for Target `Target 1' (see Figure 4.3).

The Target Options window has 10 tabs:

Device This tab is used to select or change the CPU for the project. This is similar
to the Device Selection window in Figure 4.1.

Target This tab, shown in Figure 4.4, speci�es the CPU clock frequency (in the box
labeled Xtal (MHz)), operating system, and memory regions. For the Single
Chip Mote digital system, the frequency is 5MHz, and there is no operating
system. There is one read-only memory area, corresponding to the instruction
memory, and one read-write memory, corresponding to the data memory. The
instruction memory is speci�ed as on-chip memory with a start address of
0x0. The size �eld indicates the size of the memory in bytes, where 64kB is
represented in hex as 0x10000. The startup option indicates that the code
is loaded from this memory on startup. The data memory is speci�ed as
on-chip memory with a start address of 0x20000000. The size is also 64kB
(represented in hex as 0x10000).

Output This tab, shown in Figure 4.5, speci�es the name of the build output (in
the box labeled Name of Executable), and the type of output (executable or
library). The Single Chip Mote requires an executable, and the output is
called code.axf. The check boxes labeled Debug Information, Create HEX
File, Browse Information, and Create Batch File are not required for the Single
Chip Mote.

Listing This tab contains compiler and linker options. The default settings for this
tab are su�cient.

User This tab, shown in Figure 4.6, provides the option to run programs before
compilation or before/after builds. For the Single Chip Mote, one program
must be run after the build to convert code.axf to a binary �le, code.bin.
This is done by running the following command: fromelf �bin code.axf

-o code.bin. Another program can optionally be run to convert code.axf
to a disassembled text �le. The disassembled �le lists the assembly code
in code.axf in a human-readable form, and may be useful for debugging
purposes. This is done by running the following command: fromelf -cvf

code.axf -o disasm.txt.

C/C++ This tab contains additional compiler options. The default settings for
this tab are su�cient.

Asm This tab contains the assembler options. It is recommended that the Thumb
Mode option is checked for the Single Chip Mote. Thumb Mode uses 16-bit
instructions instead of 32-bit instructions when possible, with the overall e�ect
of reduced code size.

154

code.axf

Figure 4.3: Opening the Target Options window

Linker This tab, shown in Figure 4.7, contains additional linker options. It is
recommended that the Use Memory Layout from Target Dialog box is checked.
This means that the memory regions de�ned in the Target tab are used to
generate a scatter �le (called code.sct) that describes the available memory
regions for the linker. If this box is unchecked, then a scatter �le must be
provided in the Scatter File box.

Debug This tab contains the debug options. Since the ARM Cortex-M0 Design-
Start processor does not have debug capabilities, the settings in this tab make
no di�erence.

Utilities This tab contains the options for �ashing the software onto a device using
Keil. This is currently not possible with the Single Chip Mote, and therefore
the settings in this tab make no di�erence.

Overall, the default settings in the Target Options window are su�cient for
basic applications on the Single Chip Mote. Further �ne-tuning and customization
is recommended in the future for more optimized code generation.

155

Figure 4.4: Target tab in the Target Options window

Figure 4.5: Output tab in the Target Options window

156

Figure 4.6: User tab in the Target Options window

Figure 4.7: Linker tab in the Target Options window

157

4.1.3 Scatter File Settings

A scatter �le describes the memory regions available to a microcontroller for the
linker. Keil can generate a scatter �le based on settings provided in the Target
Options window. Below is an example of the scatter �le automatically generated by
Keil for the Single Chip Mote. For more information on scatter �le see Chapter 4
of the ARM compiler toolchain Version 5.0 Linker Reference [3].

; ***

; *** Scatter -Loading Description File generated by uVision ***

; ***

LR_IROM1 0x00000000 0x00010000 { ; load region size_region

ER_IROM1 0x00000000 0x00010000 { ; load address = execution address

*.o (RESET , +First)

*(InRoot$$Sections)

.ANY (+RO)

}

RW_IRAM1 0x20000000 0x00010000 { ; RW data

.ANY (+RW +ZI)0.9

}

}

4.2 Required Assembly, Header, and C Files

The Cortex-M0 DesignStart processor on the Single Chip Mote digital system is
programmed using a combination of C, C++, and ARM assembly code in Keil.
Each project in Keil requires some basic assembly code for initial startup (found in
cm0dsasm.s), a C header �le with the addresses of the memory-mapped registers
on the Single Chip Mote (found in Memory_Map.h), a �le with C code to implement
printf over UART (found in retarget.c), and �nally any �les with the main

function and any other code required for the application.

4.2.1 cm0dsasm.s

This �le is based on an example provided in the ARM Cortex-M0 DesignStart kit.
This �le contains ARM assembly code required by the Cortex-M0 in order to handle
startup, resets, and interrupts properly.

The �rst section of this code (shown below) de�nes the size and properties of
the stack and heap. The size of the stack and heap must add up to be less than or
equal to the available data memory. Note that not all data is stored on the stack
or heap; global variables are stored in a special section of memory. If the program
has any global variables, the size of the stack and heap must be less than the data
memory in order to leave room for those variables.

Stack_Size EQU 0x0800 ; 4KB of STACK

AREA STACK , NOINIT , READWRITE , ALIGN=4

Stack_Mem SPACE Stack_Size

__initial_sp

Heap_Size EQU 0x0400 ; 2KB of HEAP

AREA HEAP , NOINIT , READWRITE , ALIGN=4

__heap_base

Heap_Mem SPACE Heap_Size

__heap_limit

158

The second section of this code (shown below) de�nes the vector table. The
vector table is a series of addresses de�ned at the beginning of a program that point
to reset handlers, exception handlers, and interrupt handlers. Each line beginning
with DCD initializes one word of memory with the value written after DCD:

; Vector Table Mapped to Address 0 at Reset

PRESERVE8

THUMB

AREA RESET , DATA , READONLY

EXPORT __Vectors

__Vectors DCD __initial_sp

DCD Reset_Handler

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

; External Interrupts

DCD UART_Handler

DCD 0

DCD 0

DCD ADC_Handler

DCD 0

DCD 0

DCD RF_Handler

DCD RFTIMER_Handler

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

The �rst 16 entries in the vector table (and their addresses in the vector table)
are: initial stack pointer value (0x00), Reset handler address (0x04), NonMask-
able Interrupt handler address (0x08), HardFault handler address (0x0C), Reserved
(0x10-0x28), SVCall (0x2C), Reserved (0x30-0x34), PendSV (0x38), and SysTick
(0x3C). If one of the exception handlers is not implemented, then the address is spec-
i�ed as 0. For more information, see the Cortex-M0 Devices Generic User Guide
[10].

The next 16 entries in the vector table are the addresses of the interrupt handlers
for the 16 available external interrupts. In this case an external interrupt de�nes
an interrupt generated outside of the Cortex-M0, including from peripherals on the
Single Chip Mote. Each address in this section of the vector table corresponds to the
one of the interrupt connections to the Cortex-M0 in the Single Chip Mote digital
system. The following Verilog code de�nes a bus containing all of the interrupt
connections to the Cortex-M0:

assign IRQ = {8'b00000000 ,RFTIMER_IRQ ,RF_IRQ ,1'b0 ,1'b0,ADC_IRQ ,1'b0 ,1'b0,UART_IRQ };

159

Note that unused interrupts are assigned to 0. Their corresponding address in
the vector table are also zero. The UART_IRQ signal, assigned to IRQ[0], is connected
to the APBUART module. The �rst address in the vector table corresponds to IRQ[0]
and UART_IRQ. The �rst address in the vector table is UART_Handler, which is a
label referring to a section of code in a later part of cm0dsasm.s.

The next section of code contains assembly code for the various exception and
interrupt handlers found in the vector table. The reset handler enables the interrupts
and then jumps to the main function de�ned in C code:

Reset_Handler PROC

GLOBAL Reset_Handler

ENTRY

LDR R1, =0 xE000E100 ;Interrupt Set Enable Register

LDR R0, =0xFF ;<- REMEMBER TO ENABLE THE INTERRUPTS !!

STR R0, [R1]

IMPORT __main

LDR R0, =__main

BX R0 ;Branch to __main

ENDP

The other interrupt handlers �rst mask other interrupts, call the interrupt han-
dler written in C code, and unmask the interrupts before returning:

UART_Handler PROC

EXPORT UART_Handler

IMPORT UART_ISR

PUSH {R0 ,LR}

MOVS R0, #1 ; ;MASK all interrupts

MSR PRIMASK , R0 ;

BL UART_ISR

MOVS R0 , #0 ;ENABLE all interrupts

MSR PRIMASK , R0

POP {R0,PC}

ENDP

All interrupt handlers should follow this basic format. In the future it may be
necessary to write additional exception handlers in assembly for unused exceptions
such as the HardFault Interrupt or NonMaskable Interrupt.

The last part of this �le initializes the stack and heap:

; User Initial Stack & Heap

IF :DEF:__MICROLIB

EXPORT __initial_sp

EXPORT __heap_base

EXPORT __heap_limit

ELSE

IMPORT __use_two_region_memory

EXPORT __user_initial_stackheap

__user_initial_stackheap

LDR R0, = Heap_Mem

LDR R1, =(Stack_Mem + Stack_Size)

LDR R2, = (Heap_Mem + Heap_Size)

LDR R3, = Stack_Mem

BX LR

ALIGN

ENDIF

160

4.2.2 Memory_Map.h

This �le is a C header �le containing the addresses of the memory-mapped registers
on the Single Chip Mote. The beginning of this �le de�nes the base addresses of
each peripheral. The addresses for each register are de�ned as an o�set of the base
address for the corresponding peripheral. The information in this �le must match the
information in the REGISTERS.vh Verilog header �le found in scm-digital/src/hw/
artix-7/uRobotDigitalController/globalHeaders. Note that each base address
is de�ned as a hexadecimal number, whereas each register is de�ned as a dereferenced
pointer to an unsigned integer:

#define APB_GPIO_BASE 0x53000000

#define GPIO_REG__INPUT *(unsigned int*)(APB_GPIO_BASE + 0x000000)

#define GPIO_REG__OUTPUT *(unsigned int*)(APB_GPIO_BASE + 0x040000)

This is used so that the registers can be directly read or written using the fol-
lowing syntax:

unsigned int i;

i = GPIO_REG__INPUT;

GPIO_REG__OUTPUT = 0x0000000F;

These de�ned registers should be used in any code that writes to or reads from
the Single Chip Mote memory-mapped peripherals.

4.2.3 retarget.c

This �le is based on an example provided in the ARM Cortex-M0 DesignStart
kit. In most ARM-based designs, this �le rede�nes low-level IO routines to work
with the hardware on the microcontroller. This �le contains the C code needed to
implement the printf function using UART, by de�ning stdout to point to the
UART peripheral, and de�ning the fputc function to write each character to the
UART peripheral:

struct __FILE {

unsigned char * ptr;

};

FILE __stdout = {(unsigned char *) APB_UART_BASE };

int fputc(int ch , FILE *f)

{

return(uart_out(ch));

}

int uart_out(int ch)

{

unsigned char* UARTPtr;

UARTPtr = (unsigned char*) APB_UART_BASE;

*UARTPtr = (char)ch;

return(ch);

}

Note that writing to any of the addresses allocated to the UART peripheral sends
the written data. For example, the following code sends the characters �abc� over
UART:

(unsigned char *) APB_UART_BASE = (char)"a";

(unsigned char *) APB_UART_BASE = (char)"b";

(unsigned char *) APB_UART_BASE = (char)"c";

161

The code in retarget.c can also implement the scanf function using UART.
However, this has not been implemented or tested and will require changes to the
APBUART hardware module.

4.2.4 main.c

This �le contains the C code for the main function called by the reset handler. This
is where the application software for the Cortex-M0 is written.

4.3 Memory Mapped Peripherals

This section contains the details on writing software that uses the Single Chip Mote
peripherals. For each peripheral it is recommended that the accompanying section
in chapter 3 is read in order to understand how it operates. Chapter 3 also contains
details on the register interface for each peripheral.

4.3.1 Radio Timer

The radio timer is a 500kHz timer that can be used for sending and receiving radio
packets without involvement from the Cortex-M0. This timer can also be used as
a generic timer without involving the radio. This timer has 8 compare units and
4 capture units. The number of compare and capture units are design parameters.
The timer is implemented using a counter that increments every 2 microseconds
when enabled. The compare unit generates an interrupt (or sends a trigger to the
radio) when the counter reaches a speci�ed value. The capture unit stores the value
of the counter when it is activated by the Cortex-M0 or the radio controller.

Before writing software that uses the radio timer on the Single Chip Mote, it is
recommended that section 3.35 describing the RFTIMER hardware module is read in
order to understand how this peripheral operates. Section 3.35.4 has information
on the register interface for the radio timer.

Timer Operation

When the timer is enabled, the counter value, stored in the RFTIMER_REG__COUNT

register, increments by 1 with each rising edge of the timer clock. RFTIMER_REG__COUNT
can also be written by the software, even when the timer is enabled (as with all other
timer registers). When the counter reaches the value in the RFTIMER_REG__MAX_COUNT
register, it rolls over back to zero. If RFTIMER_REG__MAX_COUNT is changed while the
counter value is greater than or equal to the new RFTIMER_REG__MAX_COUNT, then
the counter rolls over to zero. If multiple changes are made to RFTIMER_REG__COUNT
and RFTIMER_REG__MAX_COUNT during a single timer clock cycle, only the last change
takes e�ect on the next rising edge of the timer clock.

Timer Control

The RFTIMER_REG__CONTROL register has bits to enable the timer, enable inter-
rupts to the Cortex-M0, and reset the counter. If multiple changes are made to
RFTIMER_REG__CONTROL during a single timer clock cycle, only the last change takes
e�ect on the next rising edge of the timer clock.

162

Using a Compare Unit

To use a compare unit, �rst write the value that is compared with the timer to
the RFTIMER_REG__COMPAREx register (where x designates the particular compare
unit). Then write to the RFTIMER_REG__COMPAREx_CONTROL register to enable the
Cortex-M0 interrupt or any triggers to the radio on a compare match. For more
information on the radio triggers, see sections 4.3.2, 3.25, and 3.35.

Using a Capture Unit

To use a capture unit, write to the RFTIMER_REG__CAPTUREx_CONTROL register (where
x designates the particular capture unit) to select the inputs to the capture unit and
enable the Cortex-M0 interrupt. Any of the selected inputs can trigger the capture
unit. In particular, writing a 1 to the CAPTURE_NOW bit of the RFTIMER_REG__CAPTU-
REx_CONTROL register, when the Cortex-M0 input is enabled, triggers a capture. For
more information on the inputs to the capture units, see sections 3.25, and 3.35.

Triggering a capture copies the counter value into the RFTIMER_REG__CAPTUREx
register. The counter value stays in the RFTIMER_REG__CAPTUREx register until the
next trigger, where it is overwritten. The RFTIMER_REG__CAPTUREx register can also
be cleared by writing a 1 to the CLEAR bit of the RFTIMER_REG__CAPTUREx_CONTROL
register.

Interrupts

The radio timer has one interrupt to the Cortex-M0. This interrupt is the bitwise
OR of all of the bits in the RFTIMER_REG__INT register, which indicates the source
of the interrupt within the radio timer. Each compare unit has one bit in the
RFTIMER_REG__INT register for an interrupt on a compare match. Each capture
unit has two bits in the RFTIMER_REG__INT register for an interrupt and an over�ow
�ag when a capture is triggered. Each bit in the RFTIMER_REG__INT register must be
cleared (via the RFTIMER_REG__INT_CLEAR register) in the interrupt service routine
in order to prevent another interrupt. If any bits in the RFTIMER_REG__INT register
are 1 when the interrupt service routine returns, it will be executed again. If the
interrupt service routine does not disable the counter after the interrupt, more bits
in the RFTIMER_REG__INT register may be set to 1 while the interrupt service routine
is running.

Register Write Delays

As noted in previous sections, there are several memory-mapped registers that can
be written by the Cortex-M0 at any time that will only update on the rising edge of
the timer clock. This means that reading a register immediately after it is written
may not return the same value that was written. The system clock is 5MHz while
the timer clock is 500kHz, 10 times slower. Therefore, most of the time the following
comparison will return 0:

RFTIMER_REG__COMPARE0 = 0x33;

if (RFTIMER_REG__COMPARE0 == 0x33) {

return 1;

} else {

return 0;

}

163

However, the following code, which adds a delay after the register is written, will
return 1:

int i;

RFTIMER_REG__COMPARE0 = 0x33;

for (i = 0; i < 10; i++);

if (RFTIMER_REG__COMPARE0 == 0x33) {

return 1;

} else {

return 0;

}

Example Code

The following example code creates a small string to send over a radio packet, and
tells the radio controller to start copying packet data into memory. Immediately
after the code starts the timer, and uses compare unit 0 to tell the radio controller
to send the packet after 1 second and trigger a Cortex-M0 interrupt. The code uses
capture unit 1 to capture when the last bit of the start of frame delimiter (SFD) of
the packet is sent and trigger a Cortex-M0 interrupt. The code also uses capture
unit 2 to capture when the last bit of the packet is sent and trigger a Cortex-M0
interrupt. Both the compare and capture units used in this code have their Cortex-
M0 interrupts enabled. This code also demonstrates one possible implementation of
the interrupt service routine for the radio timer.

#include <stdio.h>

#include <rt_misc.h>

#include <stdlib.h>

#include "Memory_map.h"

int flag;

int main(void) {

char send_packet [127];

char packet_length;

char i;

flag = 0;

// Compose message

sprintf(send_packet , "This is a test packet ");

// Set radio controller registers

RFCONTROLLER_REG__TX_DATA_ADDR = &send_packet [0];

RFCONTROLLER_REG__TX_PACK_LEN = 21;

// Set radio timer registers

RFTIMER_REG__COMPARE0 = 500000; // Set compare unit 0 value to 1s

RFTIMER_REG__COMPARE0_CONTROL = 0xB; // Binary value 001011

// Enable compare unit

// Enable interrupt

// Enable the TX_SEND output to radio

RFTIMER_REG__CAPTURE1_CONTROL = 0x9; // Binary value 000001001

// Enable interrupt

// Enable TX_SFD_DONE input

RFTIMER_REG__CAPTURE2_CONTROL = 0x11; // Binary value 000010001

// Enable interrupt

// Enable TX_SEND_DONE input

// Start sending packet with TX_LOAD

RFCONTROLLER_REG__CONTROL = 0x01;

// Start the timer , enable interrupts , and reset counter

RFTIMER_REG__CONTROL = 0x7;

// Wait until packet is finished sending and

164

// the radio timer prints all values

while (flag == 0) {}

printf ("done\n");

}

void RFTIMER_ISR () {

// Read the interrupt register

unsigned int interrupt = RFTIMER_REG__INT;

// Respond to different interrupt sources

if (interrupt & 0x00000001) printf (" Telling radio to send packet with TX_SEND\n

");

if (interrupt & 0x00000200) printf ("TX SFD DONE at 0x%x\n",

RFTIMER_REG__CAPTURE1);

if (interrupt & 0x00000400) { printf ("TX SEND DONE at 0x%x\n",

RFTIMER_REG__CAPTURE2); flag = 1; }

// Clear the interrupt register

RFTIMER_REG__INT_CLEAR = interrupt;

}

4.3.2 Radio Controller and DMA

The radio controller and the DMA work together to send and receive packets. Most
of the details behind sending and receiving packets are handled in hardware; the
software only needs to set a few register values and then tell the radio controller to
begin sending or listening for a packet.

Before writing software that uses the radio controller and the DMA on the Sin-
gle Chip Mote, it is recommended that section 3.25 describing the RFcontroller

hardware module and section 3.24 describing the DMA_V2 module is read in order
to understand how these peripherals operate. Section 3.25.4 has information on the
register interface for the radio controller and section 3.24.4 has information on the
register interface for the DMA.

Radio Controller Initialization

It is recommended that the radio controller's interrupt registers are set during any
initialization code that runs right after booting. Interrupt registers can also be set
before sending or receiving a packet. The registers which con�gure the interrupt are
RFCONTROLLER_REG__INT_CONFIG and RFCONTROLLER_REG__ERROR_CONFIG.

Given that there are multiple sources for an interrupt from the radio controller,
the interrupt service routine should be designed react appropriately to any of the
enabled interrupt sources.

Packet Storage in Memory

Packet data for transmission can come from any place in the data memory, and
data from a received packet can be stored in any place in the data memory. The
radio controller and DMA only require that a continuous, sequential, word-aligned
section of memory is dedicated for transmitted or received packets, and that the
section of memory is large enough to �t an entire packet (127 bytes for send, 130
bytes for receive). It is not su�cient to declare an array of bytes inside of the
function that uses the radio controller and provide the �rst address to the radio
controller and/or DMA. This is because a packet may be sent or received long after

165

that function returns, and the memory on the stack may be re-used for another
function. Therefore, the available options are: declare an array of bytes inside a
function and ensure that the function returns after the packet is sent or received,
allocate an array of bytes on the heap and pass the pointer to any functions that
use the radio controller, or create an array of bytes as a global variable accessible to
any function that use the radio controller.

Sending a Packet

1. All packet data should be stored in a continuous, sequential, word-aligned
section of data memory. This can be done by creating an array of chars with
length equal to that of the packet data in bytes.

2. Write the starting address of the packet data to the RFCONTROLLER_REG__TX_D-
ATA_ADDR register.

3. Write the length of the packet, in bytes, to the RFCONTROLLER_REG__PACK_LEN
register.

4. Set the TX_LOAD bit of the RFCONTROLLER_REG__CONTROL register, or use the
radio timer to send a TX_LOAD signal/trigger. This will begin copying the
packet data from memory.

5. Wait for the packet data to �nish copying. This can be indicated either by the
TX_LOAD_DONE interrupt, or by monitoring/polling the TX_STATE bits of the
RFCONTROLLER_REG__STATUS register.

6. Set the TX_SEND bit of the RFCONTROLLER_REG__CONTROL register, or use the
radio timer to send a TX_SEND signal/trigger. This will begin sending the
packet data.

7. Wait for the packet to �nish sending. This can be indicated by the TX_SEND-
_DONE interrupt, or by monitoring/polling the TX_STATE bits of the RFCONTRO-
LLER_REG__STATUS register.

Simulation shows that it takes at most 85.6µs to copy the packet data from
memory to the radio controller, from the time when the TX_LOAD signal is sent to the
time when the last byte of data is copied (indicated by the TX_LOAD_DONE interrupt),
assuming the largest possible packet has a payload of 127 bytes. Simulations also
show that it takes anywhere between 161.5µs and 162µs from the time when the
TX_SEND trigger is sent to the time when the last bit of the start-of-frame delimiter is
sent (indicated by the TX_SFD_DONE interrupt). Simulations also show that it takes
at most 4322.5µs to send a packet, from the time when the TX_SEND trigger is sent
to the time when the last bit of the packet is sent (indicated by the TX_SEND_DONE
interrupt), assuming the largest possible packet has a payload of 127 bytes.

Receiving a Packet

1. Software should set aside a continuous, word-aligned section of data memory
large enough to store an entire packet. The �rst byte of this section will contain
the packet length, followed by up to 127 bytes of packet data. The two bytes

166

following the packet data are the CRC. This requires a maximum of 130 bytes.
This can be done by creating an array of chars with length equal to 130 bytes.

2. Write the starting address of this section of memory into the DMA_REG__RF-

_RX_ADDR register.

3. Set the RX_START bit of the RFCONTROLLER_REG__CONTROL register, or use the
radio timer to send an RX_START signal/trigger. This will enable listening for
packets.

4. Wait for a packet to be detected. This can be indicated by the RX_SFD_DONE in-
terrupt, or by monitoring/polling the RX_STATE bits of the RFCONTROLLER_REG-
__STATUS register.

5. If a packet is detected, wait for the data decoded and copied into memory.
This can be indicated by the RX_DONE interrupt, or by monitoring/polling the
RX_STATE bits of the RFCONTROLLER_REG__STATUS register.

6. If a packet is not detected, the RX mode can be exited by setting the RX_STOP
bit of the RFCONTROLLER_REG__STATUS register.

Example Code

The following example code initializes the radio controller and DMA registers, sends
a packet, and waits for a response. This code also demonstrates one possible imple-
mentation of the interrupt service routine for the radio controller.

#include <stdio.h>

#include <rt_misc.h>

#include <stdlib.h>

#include "Memory_map.h"

int flag1;

int flag2;

int flag3;

int main(void) {

char send_packet [127];

char recv_packet [130];

char packet_length;

char i;

// Set radio controller and DMA registers

RFCONTROLLER_REG__TX_DATA_ADDR = &send_packet [0];

DMA_REG__RF_RX_ADDR = &recv_packet [0];

RFCONTROLLER_REG__INT_CONFIG = 0x01D; // Binary value 00000 _00000_11111

// all interrupts enabled

// no rftimer pulses

// no interrupts masked

RFCONTROLLER_REG__ERROR_CONFIG = 0x01F; // Binary value 00000 _11111

// all errors enabled

// no errors masked

// Set state

flag1 = 0;

flag2 = 0;

flag3 = 0;

sprintf(send_packet , "This is a test packet ");

RFCONTROLLER_REG__TX_PACK_LEN = 21;

// Start sending packet with TX_LOAD

RFCONTROLLER_REG__CONTROL = 0x01;

167

// Wait for TX_LOAD_DONE

while (flag1 == 0) {}

// Start sending packet with TX_START

RFCONTROLLER_REG__CONTROL = 0x02;

// Wait for packet to finish sending

while (flag2 == 0) {}

// Start listening for a packet with RX_START

RFCONTROLLER_REG__CONTROL = 0x04;

// Wait for a response

while (flag3 == 0) {}

// Get the length of received packet

packet_length = recv_packet [0];

// Print out the received packet

for (i=0; i < packet_length; i++) {

printf ("%c",recv_packet[i+1]);

}

printf ("\n");

return 0;

}

void RF_ISR () {

// Read the interrupt and error registers

unsigned int interrupt = RFCONTROLLER_REG__INT;

unsigned int error = RFCONTROLLER_REG__ERROR;

// Respond to different interrupt sources

if (interrupt & 0x00000001) { printf ("TX LOAD DONE\n"); flag1 = 1; }

if (interrupt & 0x00000002) printf ("TX SFD DONE\n");

if (interrupt & 0x00000004) { printf ("TX SEND DONE\n"); flag2 = 1; }

if (interrupt & 0x00000008) printf ("RX SFD DONE\n");

if (interrupt & 0x00000010) { printf ("RX DONE\n"); flag3 = 1; }

// Respond to different error sources

if (error != 0) {

if (error & 0x00000001) printf ("TX OVERFLOW ERROR\n");

if (error & 0x00000002) printf ("TX CUTOFF ERROR\n");

if (error & 0x00000004) printf ("RX OVERFLOW ERROR\n");

if (error & 0x00000008) printf ("RX CRC ERROR\n");

if (error & 0x00000010) printf ("RX CUTOFF ERROR\n");

// Clear the error register

RFCONTROLLER_REG__ERROR_CLEAR = error;

}

// Clear the interrupt register

RFCONTROLLER_REG__INT_CLEAR = interrupt;

}

4.3.3 UART

The UART peripheral allows for data to be transferred between the Single Chip
Mote and a computer using a 3-wire RS-232 interface (more commonly known as a
serial port). The current hardware implementation accepts 8 data bits, and adds 1
start bit and 1 stop bit to create a data frame. The hardware does not support extra
parity bits or �ow control. The baud rate is a design parameter and is currently set
to 19200.

Since each data frame contains 8 data bits, it is useful to think of each UART
data frame as transmitting one ASCII character the size of a char. The current

168

test software accepts short 3-letter commands (delimited with a newline character)
over UART and uses the printf function to send strings of characters to the serial
terminal on the computer in a human-readable form. That being said, the UART
interface can send and receive any series of 8-bit data frames; the software does not
have to interpret these sets of 8 bits as ASCII characters and instead can use their
numerical values.

Before writing software that uses the UART peripheral on the Single Chip Mote,
it is recommended that section 5.7.1 describing the UART hardware module is read
in order to understand how this peripheral operates. Section 3.40.4 has information
on the UART register interface.

The UART peripheral has two hardware FIFOs to store the transmitted and
received data. All writes to this peripheral (regardless of the actual address) copy
the lower 8-bits into the FIFO for transmission. Too many writes in succession
can over�ow the FIFO and there is currently no indication to the software when
the FIFO is full. All reads from this peripheral (regardless of the actual address)
read 8-bits of data out of the receive FIFO, even when there is no valid data in
the FIFO. The hardware interrupt from the UART module indicates that there is
data in the receive FIFO. Therefore, the UART interrupt service routine is executed
when there is data in the FIFO. However, there is no indication of how much data
is in the FIFO, and therefore the interrupt service routine must read only one value
from the FIFO. The interrupt service routine will continue to be executed until the
receive FIFO is empty.

While the behavior described above is vulnerable to a variety of errors, this be-
havior is part of the example hardware provided in the ARM Cortex-M0 DesignStart
kit. Further hardware modi�cations are required to make this module more robust
and provide additional feedback to the software.

The simplest way to transmit a single 8-bit value over UART is to write directly
to the UART peripheral:

APBUART_REG__TX_DATA = 0x32;

APBUART_REG__TX_DATA = 0xBEEF; // Only the lower 8 bits are transmitted

The simplest way to transmit a string over UART is to use printf (assuming
that retarget.c is written properly):

printf ("Is this the real life? Is this just fantasy? Caught in a landslide , no

escape from reality .");

The ideal method for dealing with received data is to write the interrupt service
for the UART peripheral assuming that it reads one 8-bit value at a time. The
value can then be stored in a bu�er to be processed by code outside of the interrupt
service routine. Alternatively, the interrupt service routine can also read the data
in the bu�er and perform simple actions:

void UART_ISR (){

static char buff [4] = {0x0, 0x0 , 0x0 , 0x0};

char inChar;

inChar = UART_REG__RX_DATA;

buff [3] = buff [2];

buff [2] = buff [1];

buff [1] = buff [0];

buff [0] = inChar;

// Sends TX_LOAD signal to radio controller

169

if ((buff [3]=='l') && (buff [2]=='o') && (buff [1]=='d') && (buff [0]== '\n')) {

RFCONTROLLER_REG__CONTROL = 0x1;

// Sends TX_SEND signal to radio controller

} else if ((buff [3]=='s') && (buff [2]== 'n') && (buff [1]=='d') && (buff [0]== '\n

')) {

RFCONTROLLER_REG__CONTROL = 0x2;

// Sends RX_START signal to radio controller

} else if ((buff [3]=='r') && (buff [2]== 'c') && (buff [1]=='v') && (buff [0]== '\n

')) {

DMA_REG__RF_RX_ADDR = &recv_packet [0];

RFCONTROLLER_REG__CONTROL = 0x4;

// Sends RX_STOP signal to radio controller

} else if ((buff [3]=='e') && (buff [2]== 'n') && (buff [1]=='d') && (buff [0]== '\n

')) {

RFCONTROLLER_REG__CONTROL = 0x8;

// Sends RF_RESET signal to radio controller

} else if ((buff [3]=='r') && (buff [2]== 's') && (buff [1]=='t') && (buff [0]== '\n

')) {

RFCONTROLLER_REG__CONTROL = 0x10;

// Unknown command

} else if (inChar =='\n'){

printf (" unknown command\n");

}

}

4.3.4 ADC Controller

The analog-to-digital converter (ADC) takes an analog voltage at one of the input
pins to the Single Chip Mote and converts it to a 10-bit value. Most of the details
behind the operation of the ADC are taken care of in ADC controller hardware; the
software only needs to initiate a conversion and wait for the interrupt indicating that
the conversion is complete. Alternatively, the interrupt can be disabled (through
the interrupt set-enable register of the Cortex-M0), and the ADC controller can be
polled by the software to check when the conversion is complete.

Before writing software that uses the ADC on the Single Chip Mote, it is rec-
ommended that section 3.41 describing the APBADC_V2 hardware module is read in
order to understand how this peripheral operates. Section 3.41.4 has information
on the register interface for the ADC.

The following code demonstrates how to start a conversion and wait for the
interrupt to indicate that the conversion is complete:

#include <stdio.h>

#include <rt_misc.h>

#include <stdlib.h>

#include "Memory_map.h"

int flag;

int main(void) {

flag = 0;

// Starting conversion

ADC_REG__START = 0x1;

// Wait until the conversion is finished

while (flag == 0) {}

printf ("done\n");

}

void ADC_ISR () {

printf (" Conversion complete: 0x%x\n", ADC_REG__DATA);

flag = 1;

170

}

The following code demonstrates how to start a conversion and check when the
conversion is complete using polling:

// Starting conversion

ADC_REG__START = 0x1;

// Wait until the conversion is finished

while (ADC_REG__START == 1) {}

printf (" Conversion complete: 0x%x\n", ADC_REG__DATA);

4.3.5 Analog Con�guration Registers

The analog con�guration registers are a set of programmable 16-bit read-write reg-
isters used to modify and �ne-tine the analog and radio circuits. These registers
are not needed for the FPGA version of the Single Chip Mote, since the analog and
radio circuits are programmed separately. However, the ASIC version of the Single
Chip Mote will directly connect the outputs of these registers to the analog and
radio circuits. Each register is 16 bits wide and the number of registers is a design
parameter.

The following code demonstrates how to write to and read from one of the analog
con�guration registers:

unsigned int i;

unsigned int j;

ANALOG_CFG_REG__0 = 0xBEEF;

i = 0xFFFFFFFF;

ANALOG_CFG_REG__0 = i; // Only the lower 16 bits are written

j = ANALOG_CFG_REG__0; // Should be equal to 0x0000FFFF

// Upper 16 bits are always zero

Note that unsigned integers (32-bits) are used since ANALOG_CFG_REG__0 is de-
�ned in Memory_Map.h as a dereferenced pointer to an unsigned integer. It may
be useful to change the de�nition of ANALOG_CFG_REG__0 if a 16-bit data type is
preferred.

4.3.6 General-Purpose Input and Output Registers

The read-only general-purpose input register is used to read the values of the digital
inputs to the Single Chip Mote. The number of inputs is a design parameter, with a
maximum value of 16. On the FPGA version of the Single Chip Mote, these inputs
are connected to either switches or input pins on the FPGA board. On the ASIC
version of the Single Chip Mote, these inputs are connected to input pads on the
chip.

The read-write general-purpose output register is used to write values to the
digital outputs from the Single Chip Mote. The number of outputs is a design
parameter, with a maximum value of 16. On the FPGA version of the Single Chip
Mote, these outputs are connected to either LEDs or output pins on the FPGA
board. On the ASIC version of the Single Chip Mote, these outputs are connected
to output pads on the chip.

The following code demonstrates how to read from the input register, and read
from or write to the output register:

171

unsigned int i;

unsigned int j;

i = GPIO_REG__INPUT; // Assuming there are n inputs , the

// lower n bits contain the input

// data , and thehe upper 16-n bits

// are zero.

GPIO_REG__OUTPUT = 0x123; // Assuming there are m outputs , the

// lower m bits are used and the

// upper 16-m bits are ignored

j = GPIO_REG__OUTPUT; // Assuming there are m outputs , the

// lower m bits contain the output

// values and the upper 16-m bits

// are zero.

4.4 Current Demo Software

The software currently used to test and demonstrate the Single Chip Mote digital
system on an FPGA is found in the following Keil project: scm-digital/proj/

keil/uRobotDigitalController/code.uvprojx. This software responds to several
di�erent commands sent to the Single Chip Mote via UART:

cpy <string>\n Copy <string> to send_packet bu�er, which contains the data
to be transmitted via the radio.

lod\n Tell the radio controller to copy the data in send_packet for transmission
using the TX_LOAD bit in the RFCONTROLLER_REG__CONTROL register.

snd\n Tell the radio controller to transmit a packet using the TX_SEND bit in the
RFCONTROLLER_REG__CONTROL register.

rcv\n Tell the radio controller to listen for incoming packets using the RX_START

bit in the RFCONTROLLER_REG__CONTROL register.

end\n Tell the radio controller to stop listening for incoming packets using the
RX_STOP bit in the RFCONTROLLER_REG__CONTROL register.

rst\n Reset the radio controller using the RF_RESET bit in the RFCONTROLLER_REG-
__CONTROL register.

sta\n Print the value of the radio controller status register, RFCONTROLLER_REG-
__STATUS.

adc\n Initiate an ADC conversion using the ADC_REG__START register.

atx\n Auto-TX: Wait 0.5s, then send a TX_LOAD signal to the radio controller using
the radio timer. Wait 0.5s, then send a TX_SEND signal to the radio from the
radio timer. Also use the radio timer to capture when the last bit of the SFD
is sent and when the last bit of the packet is sent.

arx\n Auto-RX: Wait 0.5s, then send a RX_START signal to the radio controller
using the radio timer. Also use the radio timer to capture when the SFD is
detected and when the packet is copied into memory.

172

rrt\n Resets the radio timer compare and capture units. This command should be
run after atx or arx since the compare and capture units continue to run after
the command is complete.

cm0dsasm.s, retarget.c, Memory_map.h

The contents of these �les match their descriptions in previous sections of this chap-
ter. To recap:

� cm0dsasm.s contains the assembly code that describes the vector table, reset
handler, and interrupt handlers.

� retarget.c contains the C code used to implement the printf function using
UART.

� Memory_map.h contains de�ne statements for all of the peripheral memory-
mapped registers.

rf_global_vars.h

This �le contains the declarations for the send_packet and recv_packet bu�ers:

// Set aside sections of address space for the packet

char send_packet [127] __attribute__ ((aligned (4)));

char recv_packet [130] __attribute__ ((aligned (4)));

These bu�ers are de�ned as global variables (and are not stored on the stack
or the heap). The aligned(4) attribute ensures that the �rst address of these
bu�ers are word-aligned, which is required for the radio controller and DMA to
function correctly. This �le is included in any other �le that contains a function
using send_packet or recv_packet, where these two variables are de�ned using
the extern keyword:

#include "rf_global_vars.h"

extern char send_packet [127];

extern char recv_packet [130];

This �le is included in main.c and Int_Handlers.h. Using globally de�ned
bu�ers for storing packet data ensures that the addresses dedicated to these bu�ers
are not overwritten once a the function using them returns.

main.c

This �le contains the main function that executes after reset:

int main(void) {

int t;

int j;

printf ("\ nWelcome to the uRobot Digital Controller\n\n");

// SYSTEM INITIALIZATION

RFCONTROLLER_REG__TX_DATA_ADDR = &send_packet [0];

RFCONTROLLER_REG__INT_CONFIG = 0x3FF; // Enable all interrupts and pulses to

radio timer

RFCONTROLLER_REG__ERROR_CONFIG = 0x1F; // Enable all errors

RFTIMER_REG__MAX_COUNT = 0xFFFFFFFF;

RFTIMER_REG__CONTROL = 0x7;

173

printf (" Initialization complete\n");

while (1) {

j = GPIO_REG__INPUT;

for(t=0;t <100;t++);

GPIO_REG__OUTPUT = j;

}

}

The main function �rst initializes the radio controller by setting the address for
transmitted packet data, and then sets up the interrupt and error con�guration
registers. After that the function goes into an in�nite loop. This function loops
forever without doing anything useful since the commands are sent via UART and
each command is executed in the UART interrupt service routine. Inside of the loop,
the general-purpose digital inputs are sampled, and then copied onto the general-
purpose digital outputs. On an FPGA the inputs are connected to switches and
the outputs are connected to LEDs, and so the loop code makes the LEDs match
the switches. If the switches are changed and the LEDs do not change, then the
microprocessor may be stuck in some unrecoverable state.

Int_Handlers.h

This �le contains the interrupt service routines for the UART, ADC, radio controller,
and radio timer. These service routines are executed each time these peripherals
trigger an interrupt.

The UART interrupt service routine is called when a single 8-bit value is trans-
mitted to the Single Chip Mote via UART. This demo software interprets each 8-bit
value as a single ASCII character, and a series of 4 ASCII characters can indicate
a particular command. The UART interrupt service routine has a static bu�er to
store the last 4 received characters. If those 4 characters match a command, that
command is executed. Most commands are a series of three letters ending with a
newline character (for example, rcv\n is the command to send the RX_START sig-
nal to the radio controller). The only exception is the copy command, which is
used to copy a string into the send_packet bu�er. This command is denoted by
the characters `c', `p', and `y', followed by a space. When �cpy � is detected, this
sets a static variable called waiting_for_end_of_copy, which indicates that each
subsequent character written via UART should be copied into send_buffer, until
another newline character is written.

void UART_ISR (){

static char i=0;

static char buff [4] = {0x0, 0x0 , 0x0 , 0x0};

static char waiting_for_end_of_copy = 0;

char inChar;

inChar = UART_REG__RX_DATA;

buff [3] = buff [2];

buff [2] = buff [1];

buff [1] = buff [0];

buff [0] = inChar;

// If we are still waiting for the end of a load command

if (waiting_for_end_of_copy) {

if (inChar =='\n'){

int j=0;

printf (" copying string of size %u to send_packet: ", i);

for (j=0; j < i; j++) {

printf ("%c",send_packet[j]);

174

}

printf ("\n");

RFCONTROLLER_REG__TX_PACK_LEN = i;

i = 0;

waiting_for_end_of_copy = 0;

} else if (i < 127) {

send_packet[i] = inChar;

i++;

} else {

printf ("Input exceeds maximum packet size\n");

}

} else { //If waiting for a command

// Copies string from UART to send_packet

if ((buff [3]=='c') && (buff [2]=='p') && (buff [1]=='y') && (buff [0]== ' '))

{

waiting_for_end_of_copy = 1;

// Sends TX_LOAD signal to radio controller

} else if ((buff [3]=='l') && (buff [2]== 'o') && (buff [1]=='d') && (buff

[0]== '\n')) {

RFCONTROLLER_REG__CONTROL = 0x1;

printf ("TX LOAD\n");

// Sends TX_SEND signal to radio controller

} else if ((buff [3]=='s') && (buff [2]== 'n') && (buff [1]=='d') && (buff

[0]== '\n')) {

RFCONTROLLER_REG__CONTROL = 0x2;

printf ("TX SEND\n");

// Sends RX_START signal to radio controller

} else if ((buff [3]=='r') && (buff [2]== 'c') && (buff [1]=='v') && (buff

[0]== '\n')) {

printf (" Recieving\n");

DMA_REG__RF_RX_ADDR = &recv_packet [0];

RFCONTROLLER_REG__CONTROL = 0x4;

// Sends RX_STOP signal to radio controller

} else if ((buff [3]=='e') && (buff [2]== 'n') && (buff [1]=='d') && (buff

[0]== '\n')) {

RFCONTROLLER_REG__CONTROL = 0x8;

printf ("RX STOP\n");

// Sends RF_RESET signal to radio controller

} else if ((buff [3]=='r') && (buff [2]== 's') && (buff [1]=='t') && (buff

[0]== '\n')) {

RFCONTROLLER_REG__CONTROL = 0x10;

printf ("RF RESET\n");

// Returns the status register of the radio controller

} else if ((buff [3]=='s') && (buff [2]== 't') && (buff [1]=='a') && (buff

[0]== '\n')) {

int status = RFCONTROLLER_REG__STATUS;

printf (" status register is 0x%x\n", status);

// Initiates an ADC conversion

} else if ((buff [3]=='a') && (buff [2]== 'd') && (buff [1]=='c') && (buff

[0]== '\n')) {

ADC_REG__START = 0x1;

printf (" starting ADC conversion\n");

// Uses the radio timer to send TX_LOAD in 0.5s, TX_SEND in 1s, capture

when SFD is sent and capture when packet is sent

} else if ((buff [3]=='a') && (buff [2]== 't') && (buff [1]=='x') && (buff

[0]== '\n')) {

unsigned int t = RFTIMER_REG__COUNTER + 0x3D090;

RFTIMER_REG__COMPARE0 = t;

RFTIMER_REG__COMPARE1 = t + 0x3D090;

printf ("%x\n", RFTIMER_REG__COMPARE0);

printf ("%x\n", RFTIMER_REG__COMPARE1);

RFTIMER_REG__COMPARE0_CONTROL = 0x5;

RFTIMER_REG__COMPARE1_CONTROL = 0x9;

RFTIMER_REG__CAPTURE0_CONTROL = 0x9;

RFTIMER_REG__CAPTURE1_CONTROL = 0x11;

printf ("Auto TX\n");

// Uses the radio timer to send RX_START in 0.5s, capture when SFD is

received and capture when packet is received

} else if ((buff [3]=='a') && (buff [2]== 'r') && (buff [1]=='x') && (buff

[0]== '\n')) {

RFTIMER_REG__COMPARE0 = RFTIMER_REG__COUNTER + 0x3D090;

RFTIMER_REG__COMPARE0_CONTROL = 0x11;

RFTIMER_REG__CAPTURE0_CONTROL = 0x21;

175

RFTIMER_REG__CAPTURE1_CONTROL = 0x41;

DMA_REG__RF_RX_ADDR = &recv_packet [0];

printf ("Auto RX\n");

// Reset the radio timer compare and capture units

} else if ((buff [3]=='r') && (buff [2]== 'r') && (buff [1]=='t') && (buff

[0]== '\n')) {

RFTIMER_REG__COMPARE0_CONTROL = 0x0;

RFTIMER_REG__COMPARE1_CONTROL = 0x0;

RFTIMER_REG__CAPTURE0_CONTROL = 0x0;

RFTIMER_REG__CAPTURE1_CONTROL = 0x0;

printf ("Radio timer reset\n");

// Unknown command

} else if (inChar =='\n'){

printf (" unknown command\n");

}

}

}

The ADC interrupt service routine is called when a conversion is complete. The
interrupt service routine prints out the conversion result:

void ADC_ISR () {

printf (" Conversion complete: 0x%x\n", ADC_REG__DATA);

}

The radio controller interrupt service routine prints the reason for the inter-
rupt based on the RFCONTROLLER_REG__INT and RFCONTROLLER_REG__ERROR regis-
ters and then clears these registers. If the interrupt was triggered after a packet was
received, the packet data is also printed:

void RF_ISR () {

unsigned int interrupt = RFCONTROLLER_REG__INT;

unsigned int error = RFCONTROLLER_REG__ERROR;

if (interrupt & 0x00000001) printf ("TX LOAD DONE\n");

if (interrupt & 0x00000002) printf ("TX SFD DONE\n");

if (interrupt & 0x00000004) printf ("TX SEND DONE\n");

if (interrupt & 0x00000008) printf ("RX SFD DONE\n");

if (interrupt & 0x00000010) {

int i;

char num_bytes_rec = recv_packet [0];

char *current_byte_rec = recv_packet +1;

printf ("RX DONE\n");

printf (" Received packet of size %d: ", num_bytes_rec);

for (i=0; i < num_bytes_rec; i++) {

printf ("%c",current_byte_rec[i]);

}

printf ("\n");

}

if (error == 0) {

if (error & 0x00000001) printf ("TX OVERFLOW ERROR\n");

if (error & 0x00000002) printf ("TX CUTOFF ERROR\n");

if (error & 0x00000004) printf ("RX OVERFLOW ERROR\n");

if (error & 0x00000008) printf ("RX CRC ERROR\n");

if (error & 0x00000010) printf ("RX CUTOFF ERROR\n");

RFCONTROLLER_REG__ERROR_CLEAR = error;

}

RFCONTROLLER_REG__INT_CLEAR = interrupt;

}

The radio timer interrupt service routine reads the RFTIMER_REG__INT register
to �nd the source of the interrupt. If the interrupt is due to a compare unit, it prints
which compare unit triggered the interrupt. If the interrupt is due to a capture unit,
it prints which capture unit triggered the interrupt and the captured timer value.
It then clears the RFTIMER_REG__INT register:

176

void RFTIMER_ISR () {

unsigned int interrupt = RFTIMER_REG__INT;

if (interrupt & 0x00000001) printf (" COMPARE0 MATCH\n");

if (interrupt & 0x00000002) printf (" COMPARE1 MATCH\n");

if (interrupt & 0x00000004) printf (" COMPARE2 MATCH\n");

if (interrupt & 0x00000008) printf (" COMPARE3 MATCH\n");

if (interrupt & 0x00000010) printf (" COMPARE4 MATCH\n");

if (interrupt & 0x00000020) printf (" COMPARE5 MATCH\n");

if (interrupt & 0x00000040) printf (" COMPARE6 MATCH\n");

if (interrupt & 0x00000080) printf (" COMPARE7 MATCH\n");

if (interrupt & 0x00000100) printf (" CAPTURE0 TRIGGERED AT: 0x%x\n",

RFTIMER_REG__CAPTURE0);

if (interrupt & 0x00000200) printf (" CAPTURE1 TRIGGERED AT: 0x%x\n",

RFTIMER_REG__CAPTURE1);

if (interrupt & 0x00000400) printf (" CAPTURE2 TRIGGERED AT: 0x%x\n",

RFTIMER_REG__CAPTURE2);

if (interrupt & 0x00000800) printf (" CAPTURE3 TRIGGERED AT: 0x%x\n",

RFTIMER_REG__CAPTURE3);

if (interrupt & 0x00001000) printf (" CAPTURE0 OVERFLOW AT: 0x%x\n",

RFTIMER_REG__CAPTURE0);

if (interrupt & 0x00002000) printf (" CAPTURE1 OVERFLOW AT: 0x%x\n",

RFTIMER_REG__CAPTURE1);

if (interrupt & 0x00004000) printf (" CAPTURE2 OVERFLOW AT: 0x%x\n",

RFTIMER_REG__CAPTURE2);

if (interrupt & 0x00008000) printf (" CAPTURE3 OVERFLOW AT: 0x%x\n",

RFTIMER_REG__CAPTURE3);

RFTIMER_REG__INT_CLEAR = interrupt;

}

Connecting Two FPGA Boards for Packet Transmission

This demo software uses the radio controller to send and receive packets. However,
the Single Chip Mote design on an FPGA does not have an actual radio. However,
two FPGA boards loaded with the Single Chip Mote digital system can be con-
nected directly to one another to simulate packet transmission. See section 5.8 for
instructions on how to connect two FPGA boards together for this purpose.

177

Chapter 5

Bootloader

This chapter covers the details of the Single Chip Mote bootloader, the specialized
hardware and software used to load compiled C code onto the instruction memory
for the ARM Cortex-M0. The bootloader requires four distinct hardware/software
components:

Instruction ROM on Single Chip Mote This is a read-only memory located in
the AHBIMEM module. This ROM contains the basic software, referred to from
now on as �rmware, that runs on the ARM Cortex-M0 while the main software
is loaded into the instruction RAM.

Instruction RAM on Single Chip Mote This is a synchronous SRAM located
in the AHBIMEM module to hold the main software for the Single Chip Mote.
This RAM has no valid data when the FPGA is powered on, and must be
loaded with the right software through bootloading. This RAM is written
either from the ARM Cortex-M0 via the AHB bus, or from external hardware
using the 3 Wire Bus.

Bootload Hardware on Nexys 3 This is a custom FPGA project meant for the
Digilent Nexys 3 board. The hardware in this project is designed to read
software from the special programmable RAM on the Nexys 3 board and then
transmit it over the 3 Wire Bus to another board, containing the Single Chip
Mote digital system.

Bootload Firmware for ARM Cortex-M0 This is a small program C program
for the ARM Cortex-M0, meant to perform any actions to assist the bootload-
ing process. The end of this program resets the system and the code in the
instruction RAM is executed.

5.1 Reset Signals and Bootloading

As shown in section 3.11, the PON module samples an external reset signal and a
reset request signal (SYSRESETREQ) from the ARM Cortex-M0, and generates two
separate system-level resets for all other modules in the digital system. These are
referred to as the hard reset and the soft reset. The hard reset is triggered when
the external reset button is pressed (or upon power-up or bitstream loading). The
soft reset is triggered by either the external reset button or the reset request signal

178

from the Cortex-M0. Almost all modules in the digital system use the soft reset.
However, the AHBIMEM module uses both the hard and soft reset signals for di�erent
registers. The purpose and functionality of these two resets in the AHBIMEM module
are explained in the following section.

5.2 Instruction ROM on the Single Chip Mote

The instruction ROM is a 16kB single-port ROM where instruction data is fetched
after the system is initially powered-on (or in the case of an FPGA, when the
bitstream is initially loaded). The AHBIMEM module contains a special register, called
imem_mode, to select between the instruction RAM and ROM for instruction fetches.
The imem_mode register has two resets, connected to the hard reset and the soft
reset, and cannot be changed at any other time. The hard reset takes precedence
over the soft reset, and sets imem_mode to ROM. Thus the instructions in the ROM
always execute after power-on, bitstream loading, or external reset. On a soft reset,
the imem_mode register is set to a value stored in the next_imem_mode register.
next_imem_mode must be set by the ARM Cortex-M0 prior to requesting a reset.
This register is set by writing to the BOOTLOADER_REG__CFG register. The purpose
of the �rmware, executing from the ROM, is to perform any necessary preparations
during bootloading, set the next_imem_mode register to RAM, and then send a reset
request. After a soft reset, instructions are fetched and executed from the RAM.

In an ASIC, ROM is considered to be hard-coded and cannot be changed after
tapeout. However, on an FPGA, the value of this ROM is initialized using a COE
�le. See section 3.20.4 for more information on initializing the ROM.

5.3 Instruction RAM on the Single Chip Mote

The instruction RAM is a 64kB dual-port RAM in where the main software for the
ARM Cortex-M0 is stored and fetched during regular operation of the Single Chip
Mote. This RAM is not connected to either of the two reset signals, and thus is
una�ected by a system reset.

The AHBIMEM module has two AHB slave interfaces, one only for reading instruc-
tions, and one for reading bootloading status and writing bootload con�guration
and data. The write port of this RAM is connected to a 3 Wire Bus interface and
an AHB slave interface of the AHBIMEM for bootloading. The boot_mode register in
the AHBIMEM module determines whether the 3 Wire Bus, the AHB, or neither write
to the RAM. This register is set to neither upon reset, and can be changed by the
ARM Cortex-M0 by writing to the BOOTLOADER_REG__CFG register. The read port
of this RAM is connected to the AHB slave interface of the AHBIMEM for instruction
data.

5.4 3 Wire Bus Interface

The 3 Wire Bus (3WB) is an interface used to serially send instruction data from
the bootload hardware (on a separate FPGA board) to the Single Chip Mote (either
on an FPGA or an ASIC). The three wires for this bus are clock, data, and latch.
This interface operates according to the following rules:

179

� The data line is connected to a 31-bit shift register.

� Data is shifted onto the shift register on each rising edge of the clock.

� The latch signal is asserted just before the 32nd rising edge of the clock.

� The latch signal causes the 31 bits in the shift register, and the signal on the
data line (for 32 bits total) to be written into the instruction RAM, as long as
the boot_mode register is set to allow the 3 Wire Bus to write into the RAM.

� The AHBIMEM module keeps track of the RAM write address, and increments
this address on every write.

� Once the instruction RAM has been �lled (in this case 64kB of data has been
written), the AHBIMEM module considers the boot �nished and does not allow
further writes from the 3 Wire Bus (unless the system is reset).

The AHBIMEM module implements the receiving end of this interface. The boot-
load hardware on the Nexys 3 implements the transmitting end of this interface.

5.5 Bootload Hardware on Nexys 3

The bootload hardware on the Digilent Nexys 3 board is used to copy the main
software from a computer onto the RAM on the Nexys 3 board, and then send
that data over the 3 Wire Bus interface. The ISE project �le for this design is
scm-digital/proj/ise/spartan6/bootloader/BootloadHW.xise and the source
code is found in scm-digital/src/hw/spartan6/bootloader/.

This hardware contains two state machines and one 32kB FIFO. The �rst state
machine reads 16 bits of data out of the Nexys 3 external RAM (referred to by
Digilent as Cellular RAM) at 50MHz. The RAM is operated in a special burst
mode, where one line of 128 16-bit words is read back-to-back at high frequencies.
The state machine reads the data out of the RAM and writes it to the FIFO, pausing
at the end of each 128-word line for two reasons: the �rst is to allow for a data refresh
cycle in the RAM, and the second is to check and wait for the FIFO to have enough
room for another 128 words of data. The second state machine reads 32 bits out of
the FIFO at 5 MHz, and sends one bit at a time over the 3 Wire Bus interface.

The �rst state machine is activated by pressing the button on the Nexys 3 board
labeled BTNU. Once 64kB of instruction data has been sent over the 3 Wire Bus
interface, the LED on the Nexys 3 board labeled LED0 lights up. The unlabeled
button in the center of the group of buttons resets the bootload hardware.

5.6 Bootload Firmware for ARM Cortex-M0

5.6.1 Firmware Essentials

The bootload �rmware is a small program designed for facilitating the bootloading
process using the ARM Cortex-M0 on the Single Chip Mote. The �rmware can
perform any function or use any peripheral just like the main software for the Single
Chip Mote; however, it is limited to a size of 16kB and is permanently kept in

180

Field Bits Field Name Possible Values
0 imem_mode 0 = ROM, 1 = RAM
1 next_imem_mode 0 = ROM, 1 = RAM
3:2 boot_mode 00 = 01 = NONE, 10 = 3WB, 11 = AHB
4 boot_3wb_done 0 = 3WB boot not done, 1 = 3WB boot done

31:5 Unused Unspeci�ed

Figure 5.1: Register �elds for the read-only BOOTLOADER_REG__STATUS register

Field Bits Field Name Possible Values
1:0 boot_mode 00 = 01 = NONE, 10 = 3WB, 11 = AHB
2 next_imem_mode 0 = ROM, 1 = RAM

Figure 5.2: Register �elds for the write-only BOOTLOADER_REG__CFG register

ROM. Therefore it is essential that the �rmware performs exactly what is needed,
nothing more, and is absolutely correct. Regardless of how the new instruction data
is received and loaded into the ROM, the �rmware must perform two important
functions in order to ensure that the main software is executed. The �rst is that
the instruction memory is set to boot from RAM after a soft reset. The second, is
to send a reset request after the bootloading has completed.

5.6.2 Application Interrupt and Reset Control Register

The Application Interrupt and Reset Control Register (AIRCR) is a status and
reset control register for the ARM Cortex-M0. See ARM documentation for more
details on this register. Setting the second bit of this register, the SYSRESETREQ bit,
indicates a request for a system-level reset. This asserts the SYSRESETREQ signal in
the hardware, and the PON module generates the soft reset in response.

5.6.3 AHB Slave Interface for Bootloading

The AHBIMEM module has a special AHB slave interface for bootloading. This in-
terface is accessed using addresses with the pre�x 0x01 (this includes any address
in the range of 0x01000000 to 0x01FFFFFF). Any AHB reads to an address with
the pre�x 0x01 returns the read-only BOOTLOADER_REG__STATUS register contents.
This register shows the current imem_mode, next_imem_mode, and boot_mode val-
ues. It also shows whether bootloading through the 3 Wire Bus has �nished (as
in 64kB of data has been written through the 3 Wire Bus). Any AHB write to an
address in the range of 0x01000000 - 0x0100FFFF will result in a write into the in-
struction RAM at the corresponding address, with the pre�x of 0x01 replaced with
0x00. Any AHB write to the address 0x01F00000 will result in a write to the write-
only BOOTLOADER_REG__CFG register. Writing to this register sets next_imem_mode
and boot_mode. The table in Figure 5.1 describes the bit �elds in the read-only
BOOTLOADER_REG__STATUS register, and the table in Figure 5.2 describes the bit
�elds in the write-only BOOTLOADER_REG__CFG register.

181

5.6.4 Bootloading with the 3 Wire Bus

All �rmware loading software via the 3 Wire Bus must follow the same basic proce-
dure:

1. Set the boot_mode register to 3WB

2. Poll the BOOTLOADER_REG__STATUS register until boot_3wb_done is 1

3. Set the boot_mode register to NONE

4. Set the next_imem_mode register to RAM

5. Set the SYSRESETREQ bit of the AIRCR to trigger a soft reset

5.6.5 Bootloading with the AHB Slave Interface

The AHB slave interface for bootloading is typically used in situations where soft-
ware data is sent over another interface accessible by the ARM Cortex-M0, such
as the radio or UART. In future iterations of the Single Chip Mote might also in-
clude an optical interface to send software data to multiple devices at once. All
�rmware used to load software via the AHB slave interface must follow the same
basic procedure:

1. Set the boot_mode register to AHB

2. Listen to the radio/UART/optical interface that is sending the instruction
data

3. Copy the instruction data one word at a time into the instruction ROM by
writing to addresses with the 0x01 pre�x

4. Set the boot_mode register to NONE

5. Set the next_imem_mode register to RAM

6. Set the SYSRESETREQ bit of the AIRCR to trigger a soft reset

5.6.6 Current Firmware Implementation

The current implementation of the �rmware is found in scm-digital/proj/keil/

firmware/bootloader.uvproj. It follows the same process described in section
5.6.4. The bootloader �rst prints a message over UART saying "Welcome to the
Bootloader. Setting boot mode to 3WB." The boot_mode register is changed to
3WB, and then the BOOTLOADER_REG__STATUS register is repeatedly polled until
boot_3wb_done is 1. The boot_mode is changed to NONE, and the next_imem_mode
register is set to RAM. At that point another message is printed over UART says
"Boot complete. Restarting...". There is a long, empty for loop in order to allow
for the entire message to print, and then the SYSRESETREQ bit of the AIRCR is set.

182

5.7 Loading Software Using the Bootloader

Loading software onto the Single Chip Mote requires three �les:

� The bitstream �le for the Single Chip Mote digital system, ucontroller.bit.
For the Nexys 4 DDR using the Artix-7, this bitstream is generated using
the ISE project found at scm-digital/proj/ise/artix7/SingleChipMote/
SingleChipMote.xise. For the Nexys 3 using the Spartan-6, this bitstream
is generated using the ISE project �le found at scm-digital/proj/ise/

spartan6/uRobotDigitalController/uRobotDigitalController.xise. For
more information on how to generate a bitstream �le, see section 2.4.1.

� The bitstream �le for the bootloading hardware, top.bit. This bitstream is
generated using the ISE project found at scm-digital/proj/ise/spartan6/
bootloader/BootloadHW.xise. For more information on how to generate a
bitstream �le, see section 2.4.1.

� The C binary �le containing the software to be loaded, code.bin. This is
compiled using the Keil uVision5 project found at scm-digital/proj/keil/
uRobotDigitalController/code.uvprojx. For more information on how to
build and compile the software, see section 2.5.1.

Once these three �les have been generated, the two FPGA boards must be con-
nected to one another as well as connected to the computer via the micro-USB
ports on the boards. It is also recommended that a serial terminal is used to read
the UART output of the Single Chip Mote to verify that the �rmware was loaded
successfully.

5.7.1 Connecting UART

Only the FPGA board containing the Single Chip Mote digital system needs to be
connected via UART. The bootload hardware does not use UART.

For the Nexys 4 DDR, connect the micro-USB port labeled PROG UART to the
computer and move the power switch to the ON position. This USB port is used for
both programming and UART communication. Once the board has been recognized
by the computer and the proper drivers have been installed, use Device Manager
to �nd the COM port associated with the Nexys 4 board. From here, open up any
serial terminal program, and connect to the COM port associated with the Nexys 4
board using the following settings: baud rate of 19200, with 8 data bits, 1 stop bits,
no parity bits, and no �ow control. Load the bitstream �le using the instructions
in section 2.4.1. Once the Single Chip Mote bitstream �le has been loaded onto
the board, there will be a message sent over UART from the bootloader reading
"Welcome to the Bootloader."

For the Nexys 3, connect the micro-USB port labeled UART to the computer and
move the power switch to the ON position. This USB port is used only for UART
and not for programming. Once the board has been recognized by the computer
and the proper drivers have been installed, use Device Manager to �nd the COM
port associated with the Nexys 3 board. From here, open up any serial terminal
program, and connect to the COM port associated with the Nexys 3 board using
the following settings: baud rate of 19200, with 8 data bits, 1 stop bits, no parity

183

bits, and no �ow control. Load the bitstream �le using the instructions in section
2.4.1. Once the Single Chip Mote bitstream �le has been loaded onto the board,
there will be a message sent over UART from the bootloader reading "Welcome to
the Bootloader."

5.7.2 Using Nexys 3 to Load Nexys 4 DDR

The following steps show how to load the Single Chip Mote hardware and software
onto a Nexys 4 DDR board:

1. The Nexys 3 and Nexys 4 DDR boards each use three ports on one of the
Pmod connectors for the 3 Wire Bus. While the boards are powered o�,
connect port JB1 on the Nexys 4 to port JB1 on the Nexys 3, for the data
wire. Connect port JB2 on the Nexys 4 to port JB7 on the Nexys 3, for the
latch wire. Connect port JB10 on the Nexys 4 to port JB10 on the Nexys 3,
for clock wire. Also connect the ground ports (JB5 or JB11) of the two boards
together. See Figure 5.3 for an image of this setup.

2. On the Nexys 4 DDR, connect the micro-USB port labeled PROG UART to
the computer.

3. On the Nexys 3, connect the micro-USB port labeled USB PROG to the
computer.

4. Switch on both of the boards. Ensure that both boards are recognized and
that all drivers are installed.

5. Open a serial terminal program and connect to the COM port of the Nexys 4
DDR using the instructions in section 5.7.1.

6. Open Digilent Adept, and load the C binary �le, code.bin, onto the external
RAM of the Nexys 3. For more instructions on this process see section 2.4.2.

7. Use Digilent Adept to load the bootload hardware bitstream �le, top.bit, onto
the Nexys 3. For more instructions on this process, see section 2.4.2.

8. Open iMPACT, and load the bitstream �le for the Single Chip Mote digital
system onto the Nexys 4. For more instructions on this process, see section
2.4.1.

9. From here a message will be sent over UART, reading "Welcome to the Boot-
loader. Setting boot mode to 3WB." The Single Chip Mote is now waiting for
the software data to be sent over the 3 Wire Bus.

10. Press the button labeled BTNU on the Nexys 3 board. The LED labeled
LED0 will light up when all of the data has been sent. Another message will
be sent over UART, reading "Boot complete. Restarting..."

11. After a slight pause, the main software will load. This is indicated by a
message sent over UART reading "Welcome to the uRobot Digital Controller.
Initialization Complete."

184

Figure 5.3: Physical connections to load the Nexys 4 DDR with the Nexys 3

5.7.3 Using Nexys 3 to Load Nexys 3

Older versions of the Single Chip Mote digital system can also be loaded onto a
Digilent Nexys 3 board instead of the Nexys 4 DDR. In this case, two Nexys 3
boards are required, one now referred to as the SCMboard and one now referred
to as the bootboard. The SCMboard also needs a special expansion board from
Digilent called the VmodMIB [32], as the 3 Wire Bus clock input is attached to one
of the Pmod connectors on this expansion board.

To load the Single Chip Mote hardware and software on the SCMboard:

1. The SCMboard and bootboard each use three ports on one of the Pmod con-
nectors for the 3 Wire Bus. While the boards are powered o�, connect port
JB1 on the SCMboard to port JB1 on the bootboard, for the data wire. Con-
nect port JB2 on the SCMboard to port JB7 on the bootboard, for the latch
wire.

2. Attach the VmodMIB expansion board to the SCMboard. Connect port JB10
on the VmodMIB to port JB10 on the bootboard, for clock wire. Also connect
any of the ground ports of the two Nexys 3 boards together. See Figure 5.4
for an image of this setup.

3. On the SCMboard, connect the micro-USB port labeled USB PROG to the
computer. Also connect the micro-USB port labeled UART to the computer.

4. On the bootboard, connect the micro-USB port labeled USB PROG to the
computer.

5. Switch on both of the boards. Ensure that both boards are recognized and
that all drivers are installed.

185

Figure 5.4: Physical connections to load the Nexys 3 with another Nexys 3

6. Open a serial terminal program and connect to the COM port of the SCMboard
using the instructions in section 5.7.1.

7. Open Digilent Adept, and load the C binary �le, code.bin, onto the external
RAM of the bootboard. For more instructions on this process see section 2.4.2.

8. Use Digilent Adept to load the bootload hardware bitstream �le, top.bit, onto
the bootboard. For more instructions on this process, see section 2.4.2.

9. Use Digilent Adept load the bitstream �le for the Single Chip Mote digital
system onto the SCMboard. For more instructions on this process, see section
2.4.2.

10. From here a message will be sent over UART, reading "Welcome to the Boot-
loader. Setting boot mode to 3WB." The Single Chip Mote is now waiting for
the software data to be sent over the 3 Wire Bus.

11. Press the button labeled BTNU on the bootboard board. The LED labeled
LED0 will light up when all of the data has been sent. Another message will
be sent over UART, reading "Boot complete. Restarting..."

12. After a slight pause, the main software will load. This is indicated by a
message sent over UART reading "Welcome to the uRobot Digital Controller.
Initialization Complete."

186

5.8 Connecting Two FPGA Boards for Simulated

Packet Transmission

The Single Chip Mote on both the Nexys 3 and Nexys 4 DDR do not have actual
radios connected to the FPGAs. However, there are four GPIO pins on each board
dedicated to simulating packet transmission, by connecting the transmitted data
output (and its clock) of one board to the received data input (and its clock) of
another, and vice versa. Note that the Nexys 4 DDR design uses the same pin for
the received data clock and the 3 Wire Bus clock, and therefore the Nexys 4 DDR
will need to be disconnected from the bootloading board.

The �rst step is to program each board with the Single Chip Mote hardware and
software using the bootloader. Both boards should be connected to the computer via
UART if commands to send and receive packets are given from the computer using
UART. If the boards are programmed using the 3 Wire Bus, then the associated
wires must be disconnected after programming.

The next step is to connect the ground pins of both boards to each other. On
the Nexys 4 DDR, port JB11 can be used and on the Nexys 3, port JC5 can be
used.

The next steps are to connect the tx_clk pin of one board to the rx_clk pin of
the other board, and vice versa. Then connect the tx_dout pin of one board to the
rx_din pin of the other board, and vice versa. On the Nexys 4 DDR, the tx_clk

pin is found on port JB7, the tx_dout pin is found on port JB8, the rx_din pin
is found on port JB9, and the rx_clk pin is found on port JB10. On the Nexys
3, the rx_clk pin is found on port JC1, the rx_din pin is found on port JC2, the
tx_dout pin is found on port JC3, and the tx_clk pin is found on port JC4. Figure
5.5 shows two Nexys 4 DDR boards connected together.

Once the two boards are connected together, packets can be �transmitted� be-
tween the two boards without using a radio. This is done to verify that the radio
controller hardware and software is working correctly.

187

Figure 5.5: Connecting two Nexys 4 DDR boards for simulated packet transmission
without a radio

188

Chapter 6

Testing

The chapter outlines the hardware testing procedures for the Single Chip Mote digi-
tal system. Unit-level testbenches and simulation are used to verify that modules or
small groups of modules behave properly in isolation; real-time tests on the FPGA
hardware indicate that the entire system works together as expected, including in-
terfaces with the analog and radio circuits. Mistakes in the �nal ASIC version of this
chip are extremely costly, and simulating the entire Single Chip Mote in Cadence
or Synopsys is computationally intensive and slow. Therefore, it is essential that
the Single Chip Mote digital system is thoroughly tested in simulation and on an
FPGA before moving on to an ASIC design.

6.1 Simulation Testing Using ISim

New Verilog modules and major changes to existing modules should be veri�ed in
simulation to catch any bugs before integrating the module into the Single Chip Mote
digital system. While it is di�cult to simulate the entire Single Chip Mote digital
system altogether, designers typically use unit-level tests to check that modules are
functioning correctly and low-level integration tests to ensure that combinations
modules work together and interface as expected. The module or modules being
tested are referred to as the device under test (DUT) or unit under test (UUT).
Xilinx ISE uses a Verilog simulator, called ISim, to simulate testbenches added to
an ISE project.

6.1.1 Original Testbenches for Spartan 6

The Single Chip Mote digital system was originally designed by Francesco Bigazzi,
a visiting scholar, for the Spartan 6 FPGA. Bigazzi created separate ISE projects
for each testbench, with separate folders to hold the testbench and DUT Ver-
ilog code. Note that Bigazzi used a copy of the DUT Verilog code for his test-
benches, rather than linking to the original �les that are used for the implemen-
tation. Thus any corrections made while testing needed to be copied back to
the original �le. Each ISE project and its accompanying code are saved in their
own folder in scm-digital/proj/ise/spartan6/testbench/TESTs. For exam-
ple, the scm-digital/proj/ise/spartan6/testbench/TESTs/ADC folder contains
the ADC.xise project �le for testing Bigazzi's original ADC controller implemen-
tation. The scm-digital/proj/ise/spartan6/testbench/TESTs/ADC/src folder

189

contains a copy of Bigazzi's original ADC code and any additional testbench code.
Many of the testbenches in the scm-digital/proj/ise/spartan6/testbench/

TESTs folder are outdated since modules have been deprecated and are no longer in
use (such as the original ADC controller and the original AHB arbiter). Also, there
is no coherency between the code in scm-digital/src/hw/spartan6 and the code
stored for each individual test. Modules have been updated during the course of the
project while their testbenches (and the copies of the DUT modules) have not. For
example, the APBMUX module has been modi�ed to add and remove APB periphe-
rials, and the testbench designed by Bigazzi is not compatible. The Rfcontroller
module went through a large revision to add the spreader and correlator/despreader
module, to add an interface to the radio timer, and to improve the memory-mapped
register interface. Therefore the original testbench, which veri�ed the TX and RX
state machines before these changes, is now incompatible. This does not mean that
these changes went untested, as individual testbenches were created to verify the
spreader, correlator/despreader, and radio timer. The integration of these modules
was veri�ed in real-time on the FPGA rather than through testbenches. However,
this is not the best practice nor is it an accurate re�ection of the testing procedure
used in industry, and further care must be taken in the future to ensure that all
non-trivial changes are veri�ed.

6.1.2 Artix 7 Testbenches and Improved Testing Procedure

With the transition from the Spartan 6 to Artix 7 FPGA, and the accompanying
changes to the git repo and �le organization, a new testing procedure is devised to
ensure greater coherency between the module code and their testbenches.

There is a single ISE project, scm-digital/proj/ise/artix7/testbench/te-
stbench.xise, for all new testbenches. The code for the testbenches themselves are
found in the scm-digital/src/hw/artix7/uRobotDigitalController/testbench
folder, while the code for the device under test is the same as the implementation
code, found in scm-digital/src/hw/artix7/uRobotDigitalController. There-
fore, any changes or corrections made during simulation testing are applied to the
actual code for the module, rather than a copy of that module's code. Any changes
or corrections made while testing with the FPGA in real-time should be veri�ed by
running the testbenches again (without the need for copying since the same code
is used for simulation and implementation). Any major revisions require that the
testbench code is updated alongside with the DUT code, and that the new tests
pass in simulation before verifying in real-time.

The ISE project for testbenches, scm-digital/proj/ise/artix7/testbench/
testbench.xise, currently has 5 testbenches:

RFTIMER_tb Tests the radio timer module RFTIMER. The compare and capture
units are con�gured and then the timer is enabled. Stimulus is applied to the
DUT and the testbench ensures that it behaves as expected.

SFD_delay_TB Tests how long (in time) it takes to send the last bit of the SFD
of a packet after telling the radio controller to send a packet (using TX_SEND).
Also test how long (in time) it takes to send the last bit of a packet after telling
the radio controller to send a packet. This testbench use a clock frequency of
2MHz, to match the implementation. Example packet data is loaded into the

190

tx_fifo2 module connected to the spreader module. The spreader module
is then activated using the tx_start input and the testbench runs until the
tx_sfd_sent and done outputs are asserted. The time between tx_start and
tx_sfd_sent is calculated along with the time between tx_start and done.

LOAD_delay_TB Tests how long (in time) it takes in the worst-case to copy
packet data into the TX FIFO for radio transmission. This is the time be-
tween when the TX_LOAD signal activates the radio controller, and when the
radio controller indicates it is done using the TX_LOAD_DONE interrupt. This
testbench uses a clock frequency of 5MHz, to match the implementation.
The RFcontroller, AHBDMEM, DMA_V2, AHBLiteArbiter_V2, and AHBsub bus
modules are required for this experiment. In order to replicate the worst-case
scenario, the largest possible packet (127 bytes) is loaded into the TX FIFO
while the Master 0 input of the arbiter (which is used for the Cortex-M0) is
always requesting access to the AHBsub bus. This way the DMA must wait
each time it tries to copy data from the data memory to the radio controller.

correlator_TB Tests the corr_despreader and correlator modules to ensure
that they can detect and return a packet using an input data stream from
an MSK demodulator. An example data stream of MSK chips is clocked
into the corr_despreader module, which converts it to packet data on the
dout output. The output is then compared with the actual packet data that
corresponds to the input MSK chips.

spreader_TB Tests the combination of the tx_fifo2, spreader, symbol2chips,
correlator, corr_despreader, and rx_fifomodules. Regular packet data is
loaded into the tx_fifo2 module. The spreader module reads it out and con-
verts it to a serial data stream for an MSK modulator (using the symbol2chips
module). The corr_despreader module reads that data stream (assuming it
came from an MSK demodulator) and converts it back to regular packet data
(using the correlator module) which is then stored into the rx_fifo mod-
ule. This simulates sending and receiving a packet, and if the data in the two
FIFOs match then the modules are operating correctly.

As the Single Chip Mote digital system is expanded and modi�ed, more test-
benches should be added to the ISE project and all changes should be veri�ed in
simulation.

6.1.3 Using ISim

To simulate a testbench using ISim, �rst open an ISE project containing a testbench,
such as scm-digital/proj/ise/artix7/testbench/testbench.xise. In the De-
sign Hierarchy panel, select the Simulation view (as shown in Figure 6.1) to see a
list of all the testbenches in the project. Selecting one of these testbenches brings
up the Simulate Behavioral Model process in the Process panel. Running this pro-
cess compiles the testbench and Verilog code into an executable and launches ISim
to run that executable. Before simulating, it is recommended that the settings for
the Simulate Behavioral Model process are modi�ed to match the current testbench.
Right-clicking the Simulate Behavioral Model and selecting Process Properties... (as
shown in Figure 6.1) brings up the ISim Properties window (Figure 6.2).

191

The �rst property to modify is the Simulation Run Time. The default run time
(when the Run for Speci�ed Time box is unchecked) is 1000ns. For large testbenches,
the default time is too short and the simulation pauses in the middle of the test (the
console can be used in ISim to manually direct the simulation to continue). Therefore
the Simulation Run Time should be set to some time larger than the total run time
of the testbench. This can be estimated by taking the time unit value (speci�ed
using the `timescale directive at the top of every testbench) and multiplying it by
the number of time steps executed. For example, the following code sets the time
unit to 1ns: `timescale 1ns / 1ps, and the following line executes 12 time steps:
#12;. The Simulation Run Time parameter should not be too large in order to avoid
simulating longer than needed. Another alternative is to make the Simulation Run
Time parameter much larger than necessary, and then adding $finish; to the end
of the testbench to stop execution exactly when the test completes.

The second property to modify is the Custom Waveform Con�guration File. A
waveform con�guration �le is used by ISim to display signals from the testbench in
the waveform window. When no waveform con�guration �le is speci�ed, ISim by
default displays the waveforms of the top-level signals in the testbench. Waveforms
for signals inside of the DUT and other instantiated modules can be added to the
waveform window; however, the simulation must be run again in ISim (using the
restart and run commands in the console) in order for the waveforms to display
properly. If ISim is closed and re-opened, such as when the Verilog code is modi�ed
and re-compiled, all of the non-default waveforms must be added again. When
a waveform con�guration �le is speci�ed, ISim will automatically add all of the
waveforms before executing the simulation. Therefore, the recommended approach
is to run a testbench without a waveform con�guration �le, add all of the signals of
interest to the waveform window, save the waveform con�guration, and then modify
the Custom Waveform Con�guration File property. When using ISim, more signals
can be added to the waveform view and saved to the same waveform con�guration
�le; the new signals will also be added automatically the next time ISim is opened.
Each testbench should have its own waveform con�guration �le, and the Custom
Waveform Con�guration File property must be changed when switching between
testbenches.

Figure 6.3-6.6 demonstrate how to add signals to the waveform window, restart
and run the simulation using the console, and save a wave con�guration �le to
be used for later simulations. Figure 6.3 shows the ISim window after launching a
simulation using the default wave con�guration �le. The console shows all $display
and other varieties of print statements. The console also shows that the simulation
stopped after 110100ns; this is due to the $finish; line added to the end of the
testbench code. Otherwise, the simulation would have continued to run until it
reached the value speci�ed by the Simulation Run Time parameter. The waveform
window by default shows the waveforms of all the top-level signals. Most of these
signals are not necessary and can be removed. The order of these signals can also
be re-arranged, and the radix used to display the values of each bus can be changed.

To add more signals to the waveform window, �rst click on the module or process
that contains that signal in the Instance and Process panel on the left side of the
ISim window. This updates the Objects panel to list all of the signals inside of that
module or process. Right-clicking a particular signal and selecting Add To Wave
Window (or dragging the signal into the window) adds the waveform. These steps

192

Figure 6.1: Running a simulation in ISE

Figure 6.2: ISim Properties window

193

Figure 6.3: ISim window after launching a simulation using the default wave con-
�guration �le

are shown in Figure 6.4.
Once the waveform window is updated with the required signals, the console can

be used to restart and run the simulation again to plot all of the waveforms. This is
show in Figure 6.5. When a simulation is paused (for example at time 100ns), more
signals can be added to the waveform window; however, their waveforms for all time
steps before 100ns will not be displayed. If the simulation is continued after that
point (by using the run command in the console), the waveform for all time steps
after 100ns will be displayed.

Figure 6.6 shows how to save the waveform con�guration �le using the Save As...
option in the File menu.

6.2 Real-Time Testing on FPGA

Testbenches are useful when determining that a module behaves as according to its
speci�cation in an ideal environment. The main limitation with testbenches is that
they fail to uncover bugs in edge cases that are not considered or expected by the
designer. Running real-time integration tests reveal problems where modules inter-
act with one another and assumptions about interfaces break down. Test software
can also indicate situations where the module fails to satisfy the requirements for
the application, or the hardware does not behave according to what the software
developer expects. Modules that interact with circuits and signals from outside the
digital system, such as the ADC or the radio, should also be veri�ed in real-time, in
order to ensure that the digital and analog circuits interact appropriately and that
the digital module can handle any non-idealities that inevitably come from a noisy
system.

194

Figure 6.4: Adding a signal to the waveform window in ISim

Figure 6.5: Restarting and running a simulation in ISim

195

Figure 6.6: Saving a wave con�guration �le in ISim

6.2.1 Test Programs

Testing the Single Chip Mote digital system on an FPGA will require a C program
compiled for the Cortex-M0. Ideally this program would also contain code to exercise
all of the features that require testing, including code to check if the results are as
expected.

The current demo code found in scm-digital/proj/keil/uRobotDigitalCon-

troller/code.uvprojx is not an exhaustive test suite; however, it does exercise
many of the features of the radio controller and radio timer, and is typically used to
verify that minor changes to those modules have not caused them to stop working
outright. This code is also not the best test code since it requires user input via
UART.

In the future, an autonomous test suite should be developed to provide stimulus
to each Single Chip Mote peripheral, and check if the outputs match expectation,
and then either send the results over UART or toggle the general-purpose outputs
to indicate when the test �nishes and if it is a success or failure. This test suite
would then be run after hardware changes and hardware testbenches.

6.2.2 ChipScope

Unexpected behavior encountered during FPGA testing is much more di�cult to di-
agnose than in simulation. Simulations allow the designer to observe and sometimes
manipulate signals and state within a design and work quickly and iteratively to
resolve the issue. Within an FPGA, these signals and states are inaccessible, and it
is not possible to `pause' a circuit in order to examine its state. Xilinx does provide
a tool called ChipScope, which is used to probe and measure internal FPGA signals
and registers in real-time. A designer can choose which signals to probe after run-
ning the Synthesis process, and before running the Translate process. Any changes
to the probed signals will require running the Translate, Map, and Place & Route

196

processes again. For more information on how to use ChipScope, see the following
tutorial from Xilinx: Using Xilinx ChipScope Pro ILA Core with Project Navigator
to Debug FPGA Applications [16]. A copy is found in scm-digital/doc.

The recommended debugging process using ChipScope is as follows:

1. Determine which module may be causing the erroneous behavior.

2. Make an educated guess about which signals and state in that module may
reveal the source of the erroneous behavior, and connect those signals to the
ChipScope ILA unit.

3. Run through the processes to generate a bitstream for the design, and load
the bitstream using the ChipScope Pro software.

4. Set up the trigger settings to capture the erroneous behavior.

5. If there is no trigger or the captured data does not reveal the erroneous be-
havior, modify the trigger settings or add more signals to the ILA and try
again.

6. Once the problem is detected, use the captured data to determine the possible
bug in the Verilog code that would lead to the erroneous behavior. It also may
be possible use the captured data to replicate the situation in a testbench for
further debugging.

7. Update the code with a possible �x.

8. Test the new code in real-time or in simulation and determine if the problem is
solved. It may be necessary to repeat the previous step multiple times before
a solution is found.

Note that ChipScope ILA units use up a considerable amount of block RAM
resources on the FPGA, and it is possible to create an ILA unit that requires more
RAM than available due to the number of signals that are sampled. In this case the
Map process will fail and the ILA unit must be modi�ed to sample fewer signals.

197

Chapter 7

Transitioning to ASIC

This chapter provides an outline of the code changes required to create an ASIC
version of the Single Chip Mote digital system using the Verilog code written for
the Artix-7 FPGA. Most of the code is applicable to both FPGA and ASIC designs;
however, the FPGA design requires primitives for clock division and ROM/RAM
instantiation which are not available for ASIC designs. Most ASIC designs also
implement scan chain and test logic to ensure that there are no manufacturing
defects. Once the code changes are complete, the Verilog is synthesized using Syn-
opsys Design Compiler, and the �nal layout is created using Synopsys IC Compiler.
The layout is then combined with the required analog and RF circuits and sent for
manufacturing.

Some of the changes described in this chapter are already implemented and added
to a special branch in the git repo. These modi�cations were used to generate the
results reported in Chapter 1. The asic-src branch contains several new folders:

� scm-digital/src/hw/scm_v2 for the updated Verilog source code

� scm-digital/proj/modelsim for the ModelSim project containing system-
level testbenches for the updated code

� scm-digital/proj/keil/asic_testbench_fw and scm-digital/src/sw/asic_
testbench_fw for the C code written into the ROM for the system-level test-
benches

� scm-digital/proj/keil/asic_testbench_sw and scm-digital/src/sw/asic_
testbench_sw for the C code written into the RAM for the system level test-
benches

The Synopsys toolchain and ModelSim simulator are installed and run on servers
managed by the Berkeley Wireless Research Center (BWRC).

7.1 Power-On Reset and Clock Generator

The Single Chip Mote digital system implemented on the Artix-7 FPGA uses the
PON module to generate the required clock and reset signals. This module uses
FPGA primitives not available on ASIC designs and counter-based clock dividers
which are relatively inaccurate. The ASIC version of the Single Chip Mote requires

198

a separate analog circuit, with inputs and outputs to/from the digital system to
handle clocks and resets. This analog circuit is responsible for:

� Generating the 5MHz system clock

� Generating the 2MHz radio transmission clock (with the option of a clock
enable signal)

� Generating the 500kHz radio timer clock (with the option of a clock enable
signal), and ensuring that this clock is phase-aligned with the system clock

� Generating a 2MHz radio receive clock (with the option of a clock enable
signal) using the input data from the radio transceiver

� Bu�ering the 3 Wire Bus clock from a pad on the chip

� Debouncing the input reset signal from a pad on the chip

� Sampling the reset request signal from the Cortex-M0

� Generating the two reset signals using the input reset and the reset request
signal

All of the inputs and outputs to the PON module must be moved to the top
module for the digital system.

7.2 Memories

The Single Chip Mote digital system implemented on the Artix-7 FPGA uses instan-
tiated memories created in COREGenerator for the instruction ROM, instruction
RAM, and data RAM. These memories must be replaced with memories gener-
ated by the appropriate memory compiler, and this process requires changes to the
AHBIMEM and AHBDMEM modules. The radio controller also has two FIFOs to store
TX and RX packet data, and the memories for those FIFOs must be implemented
using two-port register �les generated by the appropriate memory compiler. This
requires changes to the tx_fifo_mem and rx_fifo_mem modules.

The memory compiler takes in the parameters of the memory (such as width,
depth, and number of write enable signals), and generates the �les describing the
layout and behavior of that memory on an ASIC chip. The layout is used when
creating the chip. The behavior is modeled in Verilog code and used for simulation.
This behavioral model is also instantiated in the Verilog code for the Single Chip
Mote digital system (in place of the memories used on the FPGA version), and the
scripts that create the �nal chip know to use the layout generated by the memory
compiler.

7.3 Scan Chain Insertion and Debug Interface

Most, if not all, ASIC designs include scan-chain registers to test the digital logic for
manufacturing errors. The scan chain is used to apply input test vectors to a module
and then read out the output of that module. A scan chain can also be used to control

199

more advanced debug and benchmarking hardware included on the chip. JTAG is
a commonly-used standard for scan chain insertion and control. The advantage of
the JTAG standard is that hardware used to communicate with a chip via JTAG
from a computer is commercially available. However, most researchers use their own
custom scan chain and debug interface. This would require developing additional
hardware and accompanying software to communicate with the chip through a test
program executed from a computer. Similar to the bootloader, Verilog code can
be written for an FPGA to communicate with both the debug interface on the
chip and a computer using a serial port or USB. The advantage of a custom debug
interface is the ability to implement more advanced features not found in the JTAG
standard. In either case, scan chain insertion, where scan chain registers are placed
throughout the design, is done in Synopsys Design Compiler, after the Verilog design
is synthesized.

7.4 Integrated Logic Analyzer

Outside of the scope of the Single Chip Mote project, an integrated logic analyzer
unit is being designed in collaboration with graduate student Nathaniel Mailoa and
undergraduate student Jimin Yoon. This project, nicknamed BearClaw, intends to
mimic the functionality of the ChipScope integrated logic analyzer, for the purposes
of debugging ASIC designs. Multiple signals within a design are connected to the
inputs of BearClaw (under the restriction that they are all in the same clock domain),
and any subset of those signals can be sampled into a dedicated memory in real-
time. BearClaw is designed such that any debug interface can be used to con�gure
which signals to sample (of the ones that are permanently connected the inputs), the
conditions for triggering a sample, and read the data out of the memory. Once the
data is transferred to a computer, it can be arranged and plotted as digital waveforms
for debugging purposes. The addition of BearClaw to the Single Chip Mote may
aid in diagnosing transient errors that are di�cult or impossible to replicate in
simulation (for example, issues when sending or receiving radio packets).

7.5 Optical Serial Interface

The current method of bootloading allows the �rmware to use the 3 Wire Bus,
the radio, or UART to receive the main software code for the instruction RAM.
Both the 3 Wire Bus and UART require a physical connection to the chip, which
is inconvenient and unreliable if the chip is not soldered to a printed circuit board
(PCB). Using the radio removes the need for a PCB; however, in order to ensure
reliable delivery, the �rmware should implement a network protocol stack, such as
OpenWSN [26], which requires larger and more complex �rmware code.

An alternative solution is to add a low-power optical receiver, such as the one
described in [17], to the Single Chip Mote. To keep the interface simple, data can be
transmitted using a protocol similar to (or exactly the same as) UART, using light
in place of a physical connection. This method is simple and lightweight in terms
of both hardware and software, and has the added advantage that multiple Single
Chip Motes can be programmed at once.

Unfortunately, the optical receiver circuit has not been implemented. Once it

200

is complete, the Single Chip Mote Digital system can use a modi�ed version of the
APBUART module to connect to this circuit. The �nal steps are to write the proper
�rmware for the Single Chip Mote and design an optical transmitter.

7.6 Changes to Top-Level IOs

The external power-on reset and clock generator will require the following changes
to the top level IOs:

� Remove the CLK and RESETn inputs

� Remove the tx_clk output and the rx_clk input

� If present, remove the clk_3wb input

� Add an input for HCLK, CLK_TX, CLK_RX, CLK_3WB, and CLK_RFTIMER. These
clocks used to come from the PONmodule and connect to the rest of the system.

� Add an output for the clock enable signals, CLK_RX_EN and CLK_3WB_EN. There
is also the option of adding outputs for CLK_TX_EN and CLK_RFTIMER_EN. The
current RFcontroller module does not have a clock enable for CLK_TX but
this can be added if necessary. The current RFTIMER module does not have a
clock enable for CLK_RFTIMER but this can be added if necessary.

� Add an output for the SYSRESETREQ signal from the Cortex-M0.

� Add an input for the hard reset, HARD_RESETn, and the soft reset, HRESETn.
These resets used to come form the PON module and connect to the rest of the
system.

The chosen scan chain and debug interface will also have its own set of IOs. If an
optical interface is added for bootloading, it will also require additional IOs.

201

Chapter 8

Conclusion

This report serves to document the two years of work behind the development of
the Single Chip Mote digital system, and pass on the knowledge obtained during
this process to those who continue to iterate and improve on this initial design. A
tested and functioning FPGA prototype is presented, with a built-in ARM Cortex-
M0 microprocessor, radio controller, radio timer, and ADC interface. Instructions
on how to install the FPGA toolchain and software development tools are included,
as well as overviews of their purpose and use in the Single Chip Mote project. This
document also covers the testing procedures used to verify this design, and the
changes required to take the FPGA-based design and create an ASIC.

The established architecture and interfaces to the radio and analog circuits are
merely the bare minimum required for a fully-functioning Single Chip Mote; this
project still has a long way to go before it is ready to interface with embedded
sensors and microrobots. In the short-term, this project still requires an interface
for hardware debugging, and system-level simulations for its mixed-signal interfaces,
before it is ready for tapeout in August 2016. In the long-term, this project requires
a dedicated group of hardware and software designers to converge on the preferred
system-level speci�cations for the ideal wireless sensor node and microrobot con-
troller. The Single Chip Mote digital system also lacks power management hardware
for powering down modules that are not in use. Once it is completely solar powered,
the Single Chip Mote will also need on-chip nonvolatile memory and brownout de-
tection circuitry to operate in environments with inconsistent levels of illumination,
and energy storage solutions to continue operating in environments with little or no
light. Finally, achieving the optimal design in terms of energy consumption requires
design space exploration to �nd the best combination of voltage and frequency while
still meeting the requirements of software developers.

The Single Chip Mote is an incredibly ambitious project. Integrating a fully-
functioning microprocessor, radio, and sensors onto a single die with zero external
components is unprecedented in both academia and industry. That being said,
the Single Chip Mote team is composed of hardworking and resourceful engineers,
who will undoubtedly prove that this is both achievable and useful for real-world
applications.

202

Appendix A

Appendix

A.1 AHBLiteArbiter_V2 State Transition Table

This table lists all possible combinations of inputs and state for AHBLiteArbiter_V2,
and lists the next state for each combination as well as any actions that must
be taken. The names of the columns are abbreviated versions of the signals in
AHBLiteArbiter_V2 and are described below:

current_aphase This column corresponds to the current_address_phase sig-
nal. The possible values in the column are PASS_M0, LATCH_M0, and
LATCH_M1. These three values correspond with the three address phase
states.

current_dphase This column corresponds to the current_data_phase signal.
The possible values in the column are NONE, M0, and M1. These three
values correspond with the three data phase states.

latched_M1 This column corresponds to the inputs_latched_M1 signal. The
possible values are 0 and 1.

req_M1 This column represents the req_M1 signal. The possible values are 0 and
1.

latched_M0 This column corresponds to the inputs_latched_M0 signal. The
possible values are 0 and 1.

req_M0 This column represents the req_M0 signal. The possible values are 0 and
1.

HREADY This column represents the HREADYOUT_S signal. The possible values
are 0 and 1.

next_aphase This column corresponds to the next_address_phase signal. The
possible values in the column are PASS_M0, LATCH_M0, and LATCH_M1.
These three values correspond with the three address phase states. If this
column is blank, then the combination of state and inputs is invalid.

203

next_dphase This column corresponds to the next_data_phase signal. The pos-
sible values in the column are NONE, M0, and M1. These three values cor-
respond with the three data phase states. If this column is blank, then the
combination of state and inputs is invalid.

notes/actions This column is used to indicate whether a combination of state and
inputs is invalid or if there are any actions that must be taken based on this
combination of state and inputs. The possible actions are to latch or clear
the address phase signals from M0 or M1. These correspond to the latch_M0,
latch_M1, clr_M0, and clr_M1 signals.

current_aphase current_dphase latched_M1 req_M1 latched_M0 req_M0 HREADY next_aphase next_dphase notes/actions
PASS_M0 NONE 0 0 0 0 0 PASS_M0 NONE
PASS_M0 NONE 0 0 0 0 1 PASS_M0 NONE
PASS_M0 NONE 0 0 0 1 0 PASS_M0 M0
PASS_M0 NONE 0 0 0 1 1 PASS_M0 M0
PASS_M0 NONE 0 0 1 0 0 invalid state
PASS_M0 NONE 0 0 1 0 1 invalid state
PASS_M0 NONE 0 0 1 1 0 invalid state
PASS_M0 NONE 0 0 1 1 1 invalid state
PASS_M0 NONE 0 1 0 0 0 LATCH_M1 NONE latch M1 signals
PASS_M0 NONE 0 1 0 0 1 LATCH_M1 NONE latch M1 signals
PASS_M0 NONE 0 1 0 1 0 LATCH_M1 M0 latch M1 signals
PASS_M0 NONE 0 1 0 1 1 LATCH_M1 M0 latch M1 signals
PASS_M0 NONE 0 1 1 0 0 invalid state
PASS_M0 NONE 0 1 1 0 1 invalid state
PASS_M0 NONE 0 1 1 1 0 invalid state
PASS_M0 NONE 0 1 1 1 1 invalid state
PASS_M0 NONE 1 0 0 0 0 invalid state
PASS_M0 NONE 1 0 0 0 1 invalid state
PASS_M0 NONE 1 0 0 1 0 invalid state
PASS_M0 NONE 1 0 0 1 1 invalid state
PASS_M0 NONE 1 0 1 0 0 invalid state
PASS_M0 NONE 1 0 1 0 1 invalid state
PASS_M0 NONE 1 0 1 1 0 invalid state
PASS_M0 NONE 1 0 1 1 1 invalid state
PASS_M0 NONE 1 1 0 0 0 invalid state
PASS_M0 NONE 1 1 0 0 1 invalid state
PASS_M0 NONE 1 1 0 1 0 invalid state
PASS_M0 NONE 1 1 0 1 1 invalid state
PASS_M0 NONE 1 1 1 0 0 invalid state
PASS_M0 NONE 1 1 1 0 1 invalid state
PASS_M0 NONE 1 1 1 1 0 invalid state
PASS_M0 NONE 1 1 1 1 1 invalid state
PASS_M0 M0 0 0 0 0 0 PASS_M0 M0
PASS_M0 M0 0 0 0 0 1 PASS_M0 NONE
PASS_M0 M0 0 0 0 1 0 LATCH_M0 M0 latch M0 signals
PASS_M0 M0 0 0 0 1 1 PASS_M0 M0
PASS_M0 M0 0 0 1 0 0 invalid state
PASS_M0 M0 0 0 1 0 1 invalid state
PASS_M0 M0 0 0 1 1 0 invalid state
PASS_M0 M0 0 0 1 1 1 invalid state
PASS_M0 M0 0 1 0 0 0 LATCH_M1 M0 latch M1 signals
PASS_M0 M0 0 1 0 0 1 LATCH_M1 NONE latch M1 signals
PASS_M0 M0 0 1 0 1 0 LATCH_M0 M0 latch M0 and M1 signals
PASS_M0 M0 0 1 0 1 1 LATCH_M1 M0 latch M1 signals
PASS_M0 M0 0 1 1 0 0 invalid state
PASS_M0 M0 0 1 1 0 1 invalid state
PASS_M0 M0 0 1 1 1 0 invalid state
PASS_M0 M0 0 1 1 1 1 invalid state
PASS_M0 M0 1 0 0 0 0 invalid state
PASS_M0 M0 1 0 0 0 1 invalid state
PASS_M0 M0 1 0 0 1 0 invalid state
PASS_M0 M0 1 0 0 1 1 invalid state
PASS_M0 M0 1 0 1 0 0 invalid state
PASS_M0 M0 1 0 1 0 1 invalid state
PASS_M0 M0 1 0 1 1 0 invalid state
PASS_M0 M0 1 0 1 1 1 invalid state
PASS_M0 M0 1 1 0 0 0 invalid state
PASS_M0 M0 1 1 0 0 1 invalid state
PASS_M0 M0 1 1 0 1 0 invalid state
PASS_M0 M0 1 1 0 1 1 invalid state
PASS_M0 M0 1 1 1 0 0 invalid state
PASS_M0 M0 1 1 1 0 1 invalid state
PASS_M0 M0 1 1 1 1 0 invalid state
PASS_M0 M0 1 1 1 1 1 invalid state
PASS_M0 M1 0 0 0 0 0 PASS_M0 M1
PASS_M0 M1 0 0 0 0 1 PASS_M0 NONE
PASS_M0 M1 0 0 0 1 0 LATCH_M0 M1 latch M0 signals
PASS_M0 M1 0 0 0 1 1 PASS_M0 M0
PASS_M0 M1 0 0 1 0 0 invalid state
PASS_M0 M1 0 0 1 0 1 invalid state
PASS_M0 M1 0 0 1 1 0 invalid state
PASS_M0 M1 0 0 1 1 1 invalid state
PASS_M0 M1 0 1 0 0 0 LATCH_M1 M1 latch M1 signals
PASS_M0 M1 0 1 0 0 1 LATCH_M1 NONE latch M1 signals
PASS_M0 M1 0 1 0 1 0 LATCH_M0 M1 latch M0 and M1 signals
PASS_M0 M1 0 1 0 1 1 LATCH_M1 M0 latch M1 signals

204

current_aphase current_dphase latched_M1 req_M1 latched_M0 req_M0 HREADY next_aphase next_dphase notes/actions
PASS_M0 M1 0 1 1 0 0 invalid state
PASS_M0 M1 0 1 1 0 1 invalid state
PASS_M0 M1 0 1 1 1 0 invalid state
PASS_M0 M1 0 1 1 1 1 invalid state
PASS_M0 M1 1 0 0 0 0 invalid state
PASS_M0 M1 1 0 0 0 1 invalid state
PASS_M0 M1 1 0 0 1 0 invalid state
PASS_M0 M1 1 0 0 1 1 invalid state
PASS_M0 M1 1 0 1 0 0 invalid state
PASS_M0 M1 1 0 1 0 1 invalid state
PASS_M0 M1 1 0 1 1 0 invalid state
PASS_M0 M1 1 0 1 1 1 invalid state
PASS_M0 M1 1 1 0 0 0 invalid state
PASS_M0 M1 1 1 0 0 1 invalid state
PASS_M0 M1 1 1 0 1 0 invalid state
PASS_M0 M1 1 1 0 1 1 invalid state
PASS_M0 M1 1 1 1 0 0 invalid state
PASS_M0 M1 1 1 1 0 1 invalid state
PASS_M0 M1 1 1 1 1 0 invalid state
PASS_M0 M1 1 1 1 1 1 invalid state
LATCH_M0 NONE 0 0 0 0 0 invalid state
LATCH_M0 NONE 0 0 0 0 1 invalid state
LATCH_M0 NONE 0 0 0 1 0 invalid state
LATCH_M0 NONE 0 0 0 1 1 invalid state
LATCH_M0 NONE 0 0 1 0 0 PASS_M0 M0 clear M0 signals
LATCH_M0 NONE 0 0 1 0 1 PASS_M0 M0 clear M0 signals
LATCH_M0 NONE 0 0 1 1 0 LATCH_M0 M0 latch M0 signals
LATCH_M0 NONE 0 0 1 1 1 LATCH_M0 M0 latch M0 signals
LATCH_M0 NONE 0 1 0 0 0 invalid state
LATCH_M0 NONE 0 1 0 0 1 invalid state
LATCH_M0 NONE 0 1 0 1 0 invalid state
LATCH_M0 NONE 0 1 0 1 1 invalid state
LATCH_M0 NONE 0 1 1 0 0 LATCH_M1 M0 clear M0 signals latch M1 signals
LATCH_M0 NONE 0 1 1 0 1 LATCH_M1 M0 clear M0 signals latch M1 signals
LATCH_M0 NONE 0 1 1 1 0 LATCH_M1 M0 latch M0 and M1 signals
LATCH_M0 NONE 0 1 1 1 1 LATCH_M1 M0 latch M0 and M1 signals
LATCH_M0 NONE 1 0 0 0 0 invalid state
LATCH_M0 NONE 1 0 0 0 1 invalid state
LATCH_M0 NONE 1 0 0 1 0 invalid state
LATCH_M0 NONE 1 0 0 1 1 invalid state
LATCH_M0 NONE 1 0 1 0 0 LATCH_M1 M0 clear M0 signals
LATCH_M0 NONE 1 0 1 0 1 LATCH_M1 M0 clear M0 signals
LATCH_M0 NONE 1 0 1 1 0 LATCH_M1 M0 latch M0 signals
LATCH_M0 NONE 1 0 1 1 1 LATCH_M1 M0 latch M0 signals
LATCH_M0 NONE 1 1 0 0 0 invalid state
LATCH_M0 NONE 1 1 0 0 1 invalid state
LATCH_M0 NONE 1 1 0 1 0 invalid state
LATCH_M0 NONE 1 1 0 1 1 invalid state
LATCH_M0 NONE 1 1 1 0 0 LATCH_M1 M0 clear M0 signals
LATCH_M0 NONE 1 1 1 0 1 LATCH_M1 M0 clear M0 signals
LATCH_M0 NONE 1 1 1 1 0 LATCH_M1 M0 latch M0 signals
LATCH_M0 NONE 1 1 1 1 1 LATCH_M1 M0 latch M0 signals
LATCH_M0 M0 0 0 0 0 0 invalid state
LATCH_M0 M0 0 0 0 0 1 invalid state
LATCH_M0 M0 0 0 0 1 0 invalid state
LATCH_M0 M0 0 0 0 1 1 invalid state
LATCH_M0 M0 0 0 1 0 0 LATCH_M0 M0
LATCH_M0 M0 0 0 1 0 1 PASS_M0 M0 clear M0 signals
LATCH_M0 M0 0 0 1 1 0 LATCH_M0 M0
LATCH_M0 M0 0 0 1 1 1 PASS_M0 M0 clear M0 signals
LATCH_M0 M0 0 1 0 0 0 invalid state
LATCH_M0 M0 0 1 0 0 1 invalid state
LATCH_M0 M0 0 1 0 1 0 invalid state
LATCH_M0 M0 0 1 0 1 1 invalid state
LATCH_M0 M0 0 1 1 0 0 LATCH_M0 M0 latch M1 signals
LATCH_M0 M0 0 1 1 0 1 LATCH_M1 M0 clear M0 signals latch M1 signals
LATCH_M0 M0 0 1 1 1 0 LATCH_M0 M0 latch M1 signals
LATCH_M0 M0 0 1 1 1 1 LATCH_M1 M0 clear M0 signals latch M1 signals
LATCH_M0 M0 1 0 0 0 0 invalid state
LATCH_M0 M0 1 0 0 0 1 invalid state
LATCH_M0 M0 1 0 0 1 0 invalid state
LATCH_M0 M0 1 0 0 1 1 invalid state
LATCH_M0 M0 1 0 1 0 0 LATCH_M0 M0
LATCH_M0 M0 1 0 1 0 1 LATCH_M1 M0 clear M0 signals
LATCH_M0 M0 1 0 1 1 0 LATCH_M0 M0
LATCH_M0 M0 1 0 1 1 1 LATCH_M1 M0 clear M0 signals
LATCH_M0 M0 1 1 0 0 0 invalid state
LATCH_M0 M0 1 1 0 0 1 invalid state
LATCH_M0 M0 1 1 0 1 0 invalid state
LATCH_M0 M0 1 1 0 1 1 invalid state
LATCH_M0 M0 1 1 1 0 0 LATCH_M0 M0
LATCH_M0 M0 1 1 1 0 1 LATCH_M1 M0 clear M0 signals
LATCH_M0 M0 1 1 1 1 0 LATCH_M0 M0
LATCH_M0 M0 1 1 1 1 1 LATCH_M1 M0 clear M0 signals
LATCH_M0 M1 0 0 0 0 0 invalid state
LATCH_M0 M1 0 0 0 0 1 invalid state
LATCH_M0 M1 0 0 0 1 0 invalid state
LATCH_M0 M1 0 0 0 1 1 invalid state
LATCH_M0 M1 0 0 1 0 0 LATCH_M0 M1
LATCH_M0 M1 0 0 1 0 1 PASS_M0 M0 clear M0 signals
LATCH_M0 M1 0 0 1 1 0 LATCH_M0 M1
LATCH_M0 M1 0 0 1 1 1 LATCH_M0 M0 latch M0 signals
LATCH_M0 M1 0 1 0 0 0 invalid state
LATCH_M0 M1 0 1 0 0 1 invalid state
LATCH_M0 M1 0 1 0 1 0 invalid state
LATCH_M0 M1 0 1 0 1 1 invalid state
LATCH_M0 M1 0 1 1 0 0 LATCH_M0 M1 latch M1 signals
LATCH_M0 M1 0 1 1 0 1 LATCH_M1 M0 clear M0 signals latch M1 signals

205

current_aphase current_dphase latched_M1 req_M1 latched_M0 req_M0 HREADY next_aphase next_dphase notes/actions
LATCH_M0 M1 0 1 1 1 0 LATCH_M0 M1 latch M1 signals
LATCH_M0 M1 0 1 1 1 1 LATCH_M1 M0 latch M0 and M1 signals
LATCH_M0 M1 1 0 0 0 0 invalid state
LATCH_M0 M1 1 0 0 0 1 invalid state
LATCH_M0 M1 1 0 0 1 0 invalid state
LATCH_M0 M1 1 0 0 1 1 invalid state
LATCH_M0 M1 1 0 1 0 0 LATCH_M0 M1
LATCH_M0 M1 1 0 1 0 1 LATCH_M1 M0 clear M0 signals
LATCH_M0 M1 1 0 1 1 0 LATCH_M0 M1
LATCH_M0 M1 1 0 1 1 1 LATCH_M1 M0 latch M0 signals
LATCH_M0 M1 1 1 0 0 0 invalid state
LATCH_M0 M1 1 1 0 0 1 invalid state
LATCH_M0 M1 1 1 0 1 0 invalid state
LATCH_M0 M1 1 1 0 1 1 invalid state
LATCH_M0 M1 1 1 1 0 0 LATCH_M0 M1
LATCH_M0 M1 1 1 1 0 1 LATCH_M1 M0 clear M0 signals
LATCH_M0 M1 1 1 1 1 0 LATCH_M0 M1
LATCH_M0 M1 1 1 1 1 1 LATCH_M1 M0 latch M0 signals
LATCH_M1 NONE 0 0 0 0 0 invalid state
LATCH_M1 NONE 0 0 0 0 1 invalid state
LATCH_M1 NONE 0 0 0 1 0 invalid state
LATCH_M1 NONE 0 0 0 1 1 invalid state
LATCH_M1 NONE 0 0 1 0 0 invalid state
LATCH_M1 NONE 0 0 1 0 1 invalid state
LATCH_M1 NONE 0 0 1 1 0 invalid state
LATCH_M1 NONE 0 0 1 1 1 invalid state
LATCH_M1 NONE 0 1 0 0 0 invalid state
LATCH_M1 NONE 0 1 0 0 1 invalid state
LATCH_M1 NONE 0 1 0 1 0 invalid state
LATCH_M1 NONE 0 1 0 1 1 invalid state
LATCH_M1 NONE 0 1 1 0 0 invalid state
LATCH_M1 NONE 0 1 1 0 1 invalid state
LATCH_M1 NONE 0 1 1 1 0 invalid state
LATCH_M1 NONE 0 1 1 1 1 invalid state
LATCH_M1 NONE 1 0 0 0 0 PASS_M0 M1 clear M1 signals
LATCH_M1 NONE 1 0 0 0 1 PASS_M0 M1 clear M1 signals
LATCH_M1 NONE 1 0 0 1 0 LATCH_M0 M1 latch M0 signals clear M1 signals
LATCH_M1 NONE 1 0 0 1 1 LATCH_M0 M1 latch M0 signals clear M1 signals
LATCH_M1 NONE 1 0 1 0 0 LATCH_M0 M1 clear M1 signals
LATCH_M1 NONE 1 0 1 0 1 LATCH_M0 M1 clear M1 signals
LATCH_M1 NONE 1 0 1 1 0 LATCH_M0 M1 clear M1 signals
LATCH_M1 NONE 1 0 1 1 1 LATCH_M0 M1 clear M1 signals
LATCH_M1 NONE 1 1 0 0 0 LATCH_M1 M1 latch M1 signals
LATCH_M1 NONE 1 1 0 0 1 LATCH_M1 M1 latch M1 signals
LATCH_M1 NONE 1 1 0 1 0 LATCH_M0 M1 latch M0 and M1 signals
LATCH_M1 NONE 1 1 0 1 1 LATCH_M0 M1 latch M0 and M1 signals
LATCH_M1 NONE 1 1 1 0 0 LATCH_M0 M1 latch M1 signals
LATCH_M1 NONE 1 1 1 0 1 LATCH_M0 M1 latch M1 signals
LATCH_M1 NONE 1 1 1 1 0 LATCH_M0 M1 latch M1 signals
LATCH_M1 NONE 1 1 1 1 1 LATCH_M0 M1 latch M1 signals
LATCH_M1 M0 0 0 0 0 0 invalid state
LATCH_M1 M0 0 0 0 0 1 invalid state
LATCH_M1 M0 0 0 0 1 0 invalid state
LATCH_M1 M0 0 0 0 1 1 invalid state
LATCH_M1 M0 0 0 1 0 0 invalid state
LATCH_M1 M0 0 0 1 0 1 invalid state
LATCH_M1 M0 0 0 1 1 0 invalid state
LATCH_M1 M0 0 0 1 1 1 invalid state
LATCH_M1 M0 0 1 0 0 0 invalid state
LATCH_M1 M0 0 1 0 0 1 invalid state
LATCH_M1 M0 0 1 0 1 0 invalid state
LATCH_M1 M0 0 1 0 1 1 invalid state
LATCH_M1 M0 0 1 1 0 0 invalid state
LATCH_M1 M0 0 1 1 0 1 invalid state
LATCH_M1 M0 0 1 1 1 0 invalid state
LATCH_M1 M0 0 1 1 1 1 invalid state
LATCH_M1 M0 1 0 0 0 0 LATCH_M1 M0
LATCH_M1 M0 1 0 0 0 1 PASS_M0 M1 clear M1 signals
LATCH_M1 M0 1 0 0 1 0 LATCH_M1 M0 latch M0 signals
LATCH_M1 M0 1 0 0 1 1 LATCH_M0 M1 latch M0 signals clear M1 signals
LATCH_M1 M0 1 0 1 0 0 LATCH_M1 M0
LATCH_M1 M0 1 0 1 0 1 LATCH_M0 M1 clear M1 signals
LATCH_M1 M0 1 0 1 1 0 LATCH_M1 M0
LATCH_M1 M0 1 0 1 1 1 LATCH_M0 M1 clear M1 signals
LATCH_M1 M0 1 1 0 0 0 LATCH_M1 M0
LATCH_M1 M0 1 1 0 0 1 LATCH_M1 M1 latch M1 signals
LATCH_M1 M0 1 1 0 1 0 LATCH_M1 M0 latch M0 signals
LATCH_M1 M0 1 1 0 1 1 LATCH_M0 M1 latch M0 and M1 signals
LATCH_M1 M0 1 1 1 0 0 LATCH_M1 M0
LATCH_M1 M0 1 1 1 0 1 LATCH_M0 M1 latch M1 signals
LATCH_M1 M0 1 1 1 1 0 LATCH_M1 M0
LATCH_M1 M0 1 1 1 1 1 LATCH_M0 M1 latch M1 signals
LATCH_M1 M1 0 0 0 0 0 invalid state
LATCH_M1 M1 0 0 0 0 1 invalid state
LATCH_M1 M1 0 0 0 1 0 invalid state
LATCH_M1 M1 0 0 0 1 1 invalid state
LATCH_M1 M1 0 0 1 0 0 invalid state
LATCH_M1 M1 0 0 1 0 1 invalid state
LATCH_M1 M1 0 0 1 1 0 invalid state
LATCH_M1 M1 0 0 1 1 1 invalid state
LATCH_M1 M1 0 1 0 0 0 invalid state
LATCH_M1 M1 0 1 0 0 1 invalid state
LATCH_M1 M1 0 1 0 1 0 invalid state
LATCH_M1 M1 0 1 0 1 1 invalid state
LATCH_M1 M1 0 1 1 0 0 invalid state
LATCH_M1 M1 0 1 1 0 1 invalid state
LATCH_M1 M1 0 1 1 1 0 invalid state
LATCH_M1 M1 0 1 1 1 1 invalid state

206

current_aphase current_dphase latched_M1 req_M1 latched_M0 req_M0 HREADY next_aphase next_dphase notes/actions
LATCH_M1 M1 1 0 0 0 0 LATCH_M1 M1
LATCH_M1 M1 1 0 0 0 1 PASS_M0 M1 clear M1 signals
LATCH_M1 M1 1 0 0 1 0 LATCH_M1 M1 latch M0 signals
LATCH_M1 M1 1 0 0 1 1 LATCH_M0 M1 latch M0 signals clear M1 signals
LATCH_M1 M1 1 0 1 0 0 LATCH_M1 M1
LATCH_M1 M1 1 0 1 0 1 LATCH_M0 M1 clear M1 signals
LATCH_M1 M1 1 0 1 1 0 LATCH_M1 M1
LATCH_M1 M1 1 0 1 1 1 LATCH_M0 M1 clear M1 signals
LATCH_M1 M1 1 1 0 0 0 LATCH_M1 M1
LATCH_M1 M1 1 1 0 0 1 PASS_M0 M1 clear M1 signals
LATCH_M1 M1 1 1 0 1 0 LATCH_M1 M1 latch M0 signals
LATCH_M1 M1 1 1 0 1 1 LATCH_M0 M1 latch M0 signals clear M1 signals
LATCH_M1 M1 1 1 1 0 0 LATCH_M1 M1
LATCH_M1 M1 1 1 1 0 1 LATCH_M0 M1 clear M1 signals
LATCH_M1 M1 1 1 1 1 0 LATCH_M1 M1
LATCH_M1 M1 1 1 1 1 1 LATCH_M0 M1 clear M1 signals

207

Bibliography

[1] AMBA 3 AHB-Lite Protocol Speci�cation. Version 1.0. ARM. 2008. url:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.

ihi0033a/index.html.

[2] AMBA 3 APB Protocol Speci�cation. Version 1.0. ARM. 2008. url: http:
//infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0024b/

index.html.

[3] ARM compiler toolchain. Linker Reference. Version 5.0. ARM. 2011. url:
http://infocenter.arm.com/help/topic/com.arm.doc.dui0493e/

DUI0493E_arm_linker_reference.pdf.

[4] Bin2Coe. url: https://sourceforge.net/projects/bin2coe/.

[5] Joe Bungo. ARM Cortex-M0 DesignStart Processor and V6-M Architecture.
ARM. url: http://www.sase.com.ar/2012/files/2012/09/M0_v6M_Q312.
pdf.

[6] CC2538 Powerfull Wireless Microcontroller System-On-Chip for 2.4-GHz IEEE
802.15.4, 6LoWPAN, and ZigBee Applications. SWRS096D. Texas Instru-
ments. 2015. url: http://www.ti.com/lit/ds/symlink/cc2538.pdf.

[7] A. C. K. Chan et al. �Low power wireless sensor node for human centered
transportation system�. In: Systems, Man, and Cybernetics (SMC), 2012 IEEE
International Conference on. 2012, pp. 1542�1545. doi: 10.1109/ICSMC.
2012.6377955.

[8] Peter Alfke Cli�ord E Cummings. �Simulation and Synthesis Techniques for
Asynchronous FIFO Design with Asynchronous Pointer Comparisons�. In:
SNUG 2002 (Synopsys Userse Group Conference, San Jose, CA, 2002) User
Papers. Sunburst Design. 2002. url: http://www.sunburst-design.com/
papers/CummingsSNUG2002SJ_FIFO2.pdf.

[9] Cortex-M System Design Kit. ARM. url: https://www.arm.com/products/
processors/cortex-m/cortex-m-system-design-kit.php.

[10] Cortex-M0 Devices Generic User Guide. ARM. 2009. url: http://infocenter.
arm.com/help/topic/com.arm.doc.dui0497a/DUI0497A_cortex_m0_r0p0_

generic_ug.pdf.

[11] DesignStart for Processor IP. ARM. url: http://www.arm.com/products/
processors/designstart-processor-ip/.

[12] Digilent Adept 2. Digilent. url: https://reference.digilentinc.com/
digilent_adept_2.

208

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0033a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0033a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0024b/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0024b/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0024b/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0493e/DUI0493E_arm_linker_reference.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0493e/DUI0493E_arm_linker_reference.pdf
https://sourceforge.net/projects/bin2coe/
http://www.sase.com.ar/2012/files/2012/09/M0_v6M_Q312.pdf
http://www.sase.com.ar/2012/files/2012/09/M0_v6M_Q312.pdf
http://www.ti.com/lit/ds/symlink/cc2538.pdf
http://dx.doi.org/10.1109/ICSMC.2012.6377955
http://dx.doi.org/10.1109/ICSMC.2012.6377955
http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO2.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO2.pdf
https://www.arm.com/products/processors/cortex-m/cortex-m-system-design-kit.php
https://www.arm.com/products/processors/cortex-m/cortex-m-system-design-kit.php
http://infocenter.arm.com/help/topic/com.arm.doc.dui0497a/DUI0497A_cortex_m0_r0p0_generic_ug.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0497a/DUI0497A_cortex_m0_r0p0_generic_ug.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0497a/DUI0497A_cortex_m0_r0p0_generic_ug.pdf
http://www.arm.com/products/processors/designstart-processor-ip/
http://www.arm.com/products/processors/designstart-processor-ip/
https://reference.digilentinc.com/digilent_adept_2
https://reference.digilentinc.com/digilent_adept_2

[13] Guide: Getting Xilinx ISE to work with Windows 8 / Windows 10 (64-bit).
url: http://www.eevblog.com/forum/microcontrollers/guide-getting-
xilinx-ise-to-work-with-windows-8-64-bit/.

[14] Hardware. url: https://openwsn.atlassian.net/wiki/display/OW/
Hardware.

[15] �IEEE Standard for Local and metropolitan area networks�Part 15.4: Low-
Rate Wireless Personal Area Networks (LR-WPANs)�. In: IEEE Std 802.15.4-
2011 (Revision of IEEE Std 802.15.4-2006) (2011), pp. 1�314. doi: 10.1109/
IEEESTD.2011.6012487. url: http://ieeexplore.ieee.org/servlet/
opac?punumber=6012485.

[16] ISE Tutorial: Using Xilinx ChipScope Pro ILA Core with Project Navigator
to Debug FPGA Applications. Version 14.5. Xilinx. 2013. url: http://www.
xilinx.com/support/documentation/sw_manuals/xilinx14_6/ug750.

pdf.

[17] G. Kim et al. �A 695 pW standby power optical wake-up receiver for wireless
sensor nodes�. In: Proceedings of the IEEE 2012 Custom Integrated Circuits
Conference. 2012, pp. 1�4. doi: 10.1109/CICC.2012.6330603.

[18] J. Lu et al. �Toward the World Smallest Wireless Sensor Nodes With Ultralow
Power Consumption�. In: IEEE Sensors Journal 14.6 (2014), pp. 2035�2041.
issn: 1530-437X. doi: 10.1109/JSEN.2014.2309176.

[19] MDK Microcontroller Development Kit. ARM. url: http://www2.keil.com/
mdk5.

[20] University of Michigan Electrical Engineering and Computer Science. Michi-
gan Mirco Mote (M3) Makes History. 2015. url: http://www.eecs.umich.
edu/eecs/about/articles/2015/Worlds-Smallest-Computer-Michigan-

Micro-Mote.html.

[21] MSP430F15x, MSP430F16x, MSP430F161x Mixed Signal Microcontroller. SLAS368G.
Texas Instruments. 2011. url: http://www.ti.com/lit/ds/slas368g/
slas368g.pdf.

[22] Multi-File Download: ISE Design - 14.6 Full Product Installation. Xilinx. url:
http : / / www . xilinx . com / support / download / index . html / content /

xilinx/en/downloadNav/design-tools/v2012_4---14_6.html.

[23] Nexys 3 Spartan-6 FPGA Trainer Board (LIMITED TIME) � see Nexys4
DDR. Digilent. url: http://store.digilentinc.com/nexys-3-spartan-
6-fpga-trainer-board-limited-time-see-nexys4-ddr/.

[24] Nexys 4 DDR Artix-7 FPGA: Trainer Board Recommended for ECE Curricu-
lum. Digilent. url: http://store.digilentinc.com/nexys-4-ddr-artix-
7-fpga-trainer-board-recommended-for-ece-curriculum.

[25] John Notor, Anthony Caviglia, and Gary Levy. CMOS RFIC Architectures for
IEEE 802.15.4 Networks. Tech. rep. Cadence Design Systems, Inc, 2003. url:
https://www.cadence.com/rl/Resources/white_papers/CMOSRFICArchforIEEE80215.

pdf.

[26] OpenWSN Home. url: https://openwsn.atlassian.net/wiki/display/
OW?src=breadcrumbs-homepage.

209

http://www.eevblog.com/forum/microcontrollers/guide-getting-xilinx-ise-to-work-with-windows-8-64-bit/
http://www.eevblog.com/forum/microcontrollers/guide-getting-xilinx-ise-to-work-with-windows-8-64-bit/
https://openwsn.atlassian.net/wiki/display/OW/Hardware
https://openwsn.atlassian.net/wiki/display/OW/Hardware
http://dx.doi.org/10.1109/IEEESTD.2011.6012487
http://dx.doi.org/10.1109/IEEESTD.2011.6012487
http://ieeexplore.ieee.org/servlet/opac?punumber=6012485
http://ieeexplore.ieee.org/servlet/opac?punumber=6012485
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_6/ug750.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_6/ug750.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_6/ug750.pdf
http://dx.doi.org/10.1109/CICC.2012.6330603
http://dx.doi.org/10.1109/JSEN.2014.2309176
http://www2.keil.com/mdk5
http://www2.keil.com/mdk5
http://www.eecs.umich.edu/eecs/about/articles/2015/Worlds-Smallest-Computer-Michigan-Micro-Mote.html
http://www.eecs.umich.edu/eecs/about/articles/2015/Worlds-Smallest-Computer-Michigan-Micro-Mote.html
http://www.eecs.umich.edu/eecs/about/articles/2015/Worlds-Smallest-Computer-Michigan-Micro-Mote.html
http://www.ti.com/lit/ds/slas368g/slas368g.pdf
http://www.ti.com/lit/ds/slas368g/slas368g.pdf
http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/design-tools/v2012_4---14_6.html
http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/design-tools/v2012_4---14_6.html
http://store.digilentinc.com/nexys-3-spartan-6-fpga-trainer-board-limited-time-see-nexys4-ddr/
http://store.digilentinc.com/nexys-3-spartan-6-fpga-trainer-board-limited-time-see-nexys4-ddr/
http://store.digilentinc.com/nexys-4-ddr-artix-7-fpga-trainer-board-recommended-for-ece-curriculum
http://store.digilentinc.com/nexys-4-ddr-artix-7-fpga-trainer-board-recommended-for-ece-curriculum
https://www.cadence.com/rl/Resources/white_papers/CMOSRFICArchforIEEE80215.pdf
https://www.cadence.com/rl/Resources/white_papers/CMOSRFICArchforIEEE80215.pdf
https://openwsn.atlassian.net/wiki/display/OW?src=breadcrumbs-homepage
https://openwsn.atlassian.net/wiki/display/OW?src=breadcrumbs-homepage

[27] C. Park, J. Liu, and P. H. Chou. �Eco: an ultra-compact low-power wireless
sensor node for real-time motion monitoring�. In: Information Processing in
Sensor Networks, 2005. IPSN 2005. Fourth International Symposium on. 2005,
pp. 398�403. doi: 10.1109/IPSN.2005.1440956.

[28] R. Send et al. �Granular Radio EnErgy-sensing Node (GREEN): A 0.56 cm3
wireless stick-on node for non-intrusive energy monitoring�. In: SENSORS,
2013 IEEE. 2013, pp. 1�4. doi: 10.1109/ICSENS.2013.6688133.

[29] Karthik Shivashankar. ARM AMBA 3 AHB-Lite. ARM. url: http://web.
mit.edu/clarkds/www/Files/ahblite.pdf.

[30] Evgeni Stavinov. �A Practical Parallel CRC Generation Method�. In: Circuit
Cellar 234 (2010), pp. 38�45. url: http://outputlogic.com/my-stuff/
circuit-cellar-january-2010-crc.pdf.

[31] M. Tabesh et al. �A power-harvesting pad-less mm-sized 24/60GHz passive
radio with on-chip antennas�. In: 2014 Symposium on VLSI Circuits Digest of
Technical Papers. 2014, pp. 1�2.

[32] VmodMIB: VHDC Module Interface Board. Digilent. url: http://store.
digilentinc.com/vmodmib-vhdc-module-interface-board/.

210

http://dx.doi.org/10.1109/IPSN.2005.1440956
http://dx.doi.org/10.1109/ICSENS.2013.6688133
http://web.mit.edu/clarkds/www/Files/ahblite.pdf
http://web.mit.edu/clarkds/www/Files/ahblite.pdf
http://outputlogic.com/my-stuff/circuit-cellar-january-2010-crc.pdf
http://outputlogic.com/my-stuff/circuit-cellar-january-2010-crc.pdf
http://store.digilentinc.com/vmodmib-vhdc-module-interface-board/
http://store.digilentinc.com/vmodmib-vhdc-module-interface-board/

	signature_page
	main
	Introduction
	Getting Started
	Git Repository
	ARM Cortex-M0 DesignStart Processor
	FPGA Boards
	Digilent Nexys 3
	Digilent Nexys 4 DDR

	Hardware Development Tools
	Xilinx ISE Design Suite 14.6
	Digilent Adept
	Xilinx Vivado Design Suite

	Software Development Tools
	Keil uVision5
	Bin2coe

	Single Chip Mote Hardware
	ISE Project Settings
	Artix-7
	Spartan-6
	User Constraints File

	Digital System Architecture Overview
	ARM Cortex-M0 Memory Map Specification
	AMBA 3 AHB-Lite Protocol
	AMBA 3 APB Protocol
	Header Files and Parameters
	SYS_PROP.vh
	REGISTERS.vh

	Module Hierarchy
	uCONTROLLER
	Description
	Input/Output Ports
	Design Details

	CORTEXM0DS
	Description
	Input/Output Ports

	cortexm0ds_logic
	Description

	PON
	Description
	Input/Output Ports
	Design Details

	pb_debounceRESET
	Description
	Input/Output Ports
	Design Details

	ClockDiv
	Description
	Input/Output Ports and Parameters
	Design Details

	AHBDCD
	Description
	Input/Output Ports
	Design Details
	Adding Another AHB Slave

	AHBMUX
	Description
	Input/Output Ports
	Design Details
	Adding Another AHB Slave

	AHBLiteArbiter_V2
	Description
	Input/Output Ports
	Design Details

	AHBDCDsub
	Description
	Input/Output Ports
	Design Details
	Adding Another AHB Slave

	AHBMUXsub
	Description
	Input/Output Ports
	Design Details
	Adding Another AHB Slave

	AHBIMEM
	Description
	Input/Output Ports and Parameters
	Design Details
	Register Interface

	instruction_ROM
	Description
	Input/Output Ports
	Design Details
	Initialization

	instruction_RAM
	Description
	Input/Output Ports
	Design Details

	AHBDMEM
	Description
	Input/Output Ports and Parameters
	Design Details
	Register Interface

	dmem_ram
	Description
	Input/Output Ports
	Design Details

	DMA_V2
	Description
	Input/Output Ports
	Design Details
	Register Interface

	RFcontroller
	Description
	Input/Output Ports and Parameters
	Design Details
	Register Interface

	tx_fifo2
	Description
	Input/Output Ports
	Design Details

	rx_fifo
	Description
	Input/Output Ports
	Design Details

	spreader
	Description
	Input/Output Ports
	Design Details

	symbol2chips
	Description
	Input/Output Ports
	Design Details

	corr_despreader
	Description
	Input/Output Ports and Parameters
	Design Details

	correlator
	Description
	Input/Output Ports and Parameters
	Design Details

	bit_sync
	Description
	Input/Output Ports
	Design Details

	bus_sync
	Description
	Input/Output Ports and Parameters
	Design Details

	crcParallel
	Description
	Input/Output Ports
	Design Details

	RFTIMER
	Description
	Input/Output Ports and Parameters
	Design Details
	Register Interface

	compare_unit
	Description
	Input/Output Ports and Parameters
	Design Details

	capture_unit
	Description
	Input/Output Ports and Parameters
	Design Details

	AHB2APB
	Description
	Input/Output Ports
	Design Details

	APBMUX
	Description
	Input/Output Ports
	Design Details
	Adding Another APB Slave

	APBUART
	Description
	Input/Output Ports and Parameters
	Design Details
	Register Interface

	APBADC_V2
	Description
	Input/Output Ports
	Design Details
	Register Interface

	APB_ANALOG_CFG
	Description
	Input/Output Ports
	Design Details
	Register Interface

	APBGPIO
	Description
	Input/Output Ports and Parameters
	Design Details
	Register Interface

	chipscope_debug
	Deprecated Modules
	clk_div22
	pb_debounce
	DMA
	AHBTIMER
	AHB2LED
	AHB2MEM_V2
	AHB2SRAMFLSH
	AHB2SRAMFLSH_V2
	AHB2SRAMFLSH_V3
	AHBROM
	AHB_MASTER_MUX
	startSymbolDetect
	APBADC
	APBTSCHTimer
	APB_PWM_simple
	APBDO
	APBLED
	APBSW

	Single Chip Mote Software
	Keil Project Settings
	New Project and Device Selection
	Target Options
	Scatter File Settings

	Required Assembly, Header, and C Files
	cm0dsasm.s
	Memory_Map.h
	retarget.c
	main.c

	Memory Mapped Peripherals
	Radio Timer
	Radio Controller and DMA
	UART
	ADC Controller
	Analog Configuration Registers
	General-Purpose Input and Output Registers

	Current Demo Software

	Bootloader
	Reset Signals and Bootloading
	Instruction ROM on the Single Chip Mote
	Instruction RAM on the Single Chip Mote
	3 Wire Bus Interface
	Bootload Hardware on Nexys 3
	Bootload Firmware for ARM Cortex-M0
	Firmware Essentials
	Application Interrupt and Reset Control Register
	AHB Slave Interface for Bootloading
	Bootloading with the 3 Wire Bus
	Bootloading with the AHB Slave Interface
	Current Firmware Implementation

	Loading Software Using the Bootloader
	Connecting UART
	Using Nexys 3 to Load Nexys 4 DDR
	Using Nexys 3 to Load Nexys 3

	Connecting Two FPGA Boards for Simulated Packet Transmission

	Testing
	Simulation Testing Using ISim
	Original Testbenches for Spartan 6
	Artix 7 Testbenches and Improved Testing Procedure
	Using ISim

	Real-Time Testing on FPGA
	Test Programs
	ChipScope

	Transitioning to ASIC
	Power-On Reset and Clock Generator
	Memories
	Scan Chain Insertion and Debug Interface
	Integrated Logic Analyzer
	Optical Serial Interface
	Changes to Top-Level IOs

	Conclusion
	Appendix
	AHBLiteArbiter_V2 State Transition Table

	Bibliography

