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Abstract—The single chip micro-mote (SCµM) is a 2×3 mm2

single-chip crystal-free mote-on-chip. SCµM implements the
IEEE802.15.4 and BLE standards and can communicate with off-
the-shelf radios compliant to those standards. SCµM exclusively
uses on-chip oscillators, including a 2.4 GHz LC oscillator to
synthesize the communication frequency, and a 2 MHz RC
oscillator to clock the chip rate. The challenge is that the LC
oscillator drifts at 2,100 ppm over a temperature range of
45◦C, far from the 40 ppm maximum drift mandated by the
IEEE802.15.4 standard. While one-shot calibration is possible,
any temperature change causes IEEE802.15.4 communication to
fail. This paper describes a continuous calibration approach for
SCµM to adapt the tuning of its oscillators as the temperature
changes. Experimental results show that it allows SCµM to
keep communicating with an IEEE802.15.4 radio even under the
extreme condition of using a hair dryer to heat up the chip at
3◦C/min. Under these conditions, the drift of the LC oscillator
stays within the ±40 ppm limit over 94% of the time. Similarly,
the drift of the 2 MHz RC oscillator stays within ±1,000 ppm
limit 99.98% of the time.

Index Terms—IEEE802.15.4, calibration, crystal-free, single
chip micro-mote.

I. INTRODUCTION

The single chip-micro mote, SCµM [1], is a 2×3 mm2,
standard-compliant, crystal-free mote-on-chip. It features a
Cortex-M0 micro-controller, a 2.4 GHz transceiver, and an op-
tical receiver. SCµM’s radio implements the IEEE802.15.4 [2]
and BLE standards, allowing it to communicate with off-the-
shelf radios compliant to those. The use of on-chip oscillators
eliminates the need for external crystal oscillators, and in most
cases the need for a Printed Circuit Board altogether. The
ultra small form factor of SCµM enables applications where
size matters, including medical implants [3], wearables [4] and
wireless body sensor networks (WBSN) [5]. SCµM realizes
the “Smart Dust” vision, enabling tiny motes be deployed
ubiquitously [6].

SCµM is a true single-chip solution, and therefore does
not require external (crystal) oscillators. SCµM relies on
4 internal (“on-chip”) oscillating circuits for timekeeping: the
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Fig. 1. The single chip micro-mote (SCµM) is a 2×3 mm2 crystal-free
mote-on-chip. It functions without any external components other than a
power source and an antenna, and implements the IEEE802.15.4 [2] and BLE
standards.

“HF oscillator” (a 20 MHz RC oscillator to clock the Cortex-
M0), the 2 MHz RC oscillator (to time the modulating and
data rate when transmitting), the 64 MHz RC oscillator (to
time the modulating and data rate when receiving, as well
as the internal analog-to-digital converters), and the 2.4 GHz
“LC oscillator” (to control the communication frequency of
the IEEE802.15.4 radio). The reason for using 3 discrete RC
oscillators is power consumption concern. An RC oscillator’s
power scales approximately with frequency. With 3 discrete
RC oscillators, SCµM can turn on or off any RC oscillators
as needed to save power. The major challenge of using RC/LC
oscillators is that they exhibit a drift orders of magnitude
higher than crystal oscillators, and that their frequency changes
significantly with temperature [7]. SCµM’s LC oscillator ex-
hibits a 2,100 ppm drift over a 45 ◦C temperature ramp [8];
under these conditions typical crystal oscillators drift by 10-
40 ppm. It is therefore essential to continuously calibrate the
oscillators to be able to keep communicating as temperature
changes.

This goal of the research presented in this paper is to design
and evaluate a “continuous calibration” approach in which
SCµM tracks and compensates for the drift of its oscillators
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so it keeps communicating with an off-the-shelf IEEE802.15.4
device over temperature. We conduct this study over SCµM
as it is the most advanced standards-based single-chip crystal-
free mote to date. Lessons learnt and results do carry over to
other chips. To the best of our knowledge, this paper is the
first time introducing an overall calibration system for SCµM,
including the 2 MHz RC oscillator and the LC oscillator for
transmitting and receiving.

To know the frequency offset of the LC oscillator while
receiving, SCµM monitors the intermediate frequency (IF) of
the “I” channel samples. In the design of the SCµM radio, the
incoming 2.4 GHz signal is shifted to a 2.5 MHz IF as part of
reception. It is much easier to manipulate the incoming signal
at the relatively slow IF. Any inaccuracy on the frequency of
the LC oscillator directly translates in inaccuracy on the value
of the IF.

Firmware running on SCµM can measure the value of the
IF by counting its zero-crossings during some window of
time [9]. That is, the IF should be 2.5 MHz, which translates
into 5 M zero-crossings per second (one low-to-high, one high-
to-low per cycle). Over a 100 µs window (the value we use),
we expect 500 zero-crossings. To accurately time this window,
SCµM uses a 16 MHz down-converted version of its 64 MHz
RC oscillator. The calibration routine hence continuously tunes
the DAC setting of the LC oscillator to keep close to 500 zero-
crossings of the IF signal over a 100 µs window.

To know the frequency offset of the LC oscillator while
transmitting, SCµM requires the radio it is sending frame to
provide feedback about whether it got the frame and, ideally,
how “accurate” the frequency was. Interestingly, the Texas In-
struments CC2538 IEEE802.15.4 SoC measures the frequency
offset of all incoming frames available to the application
through its FREQEST register. Firmware on the CC2538 can
write the value of that register in acknowledgement frames to
SCµM.

To tune its 2 MHz RC oscillator, SCµM needs a reference
time interval, for example by having an external mote send
frames at well-defined times. If SCµM receives frames at a
period it knows to be 30 ms, it can use the counter driven
by the 2 MHz RC oscillator to count the number of cycles.
That is, tune the 2 MHz RC oscillator until the counter counts
exactly 2 MHz·30 ms = 60,000 ticks between frames received.

The contributions of this paper are three-fold:

• We propose a novel calibration approach to continuously
calibrate the on-chip 2 MHz RC oscillator, and the on-
chip 2.4 GHz LC oscillator for both transmitting and
receiving.

• Specifically, we describe a hopping technique to track
frequency using two frequency settings to avoid losing
the target frequency because of the non-linearity of the
frequency tuning.

• We demonstrate that the resulting continuous calibration
keeps the LC frequency for transmission and reception
within ±40 ppm of drift over 94% of the time under the
extreme condition of heating up SCµM using a hair dryer.
Under the same conditions, the drift of the 2 MHz RC
oscillator stays between ±1 000 ppm 99.98% of the time.

The remainder of this paper is organized as follows. Sec-
tion II summarizes the related work on frequency calibration,
with a particular focus on handling temperature changes.
Section III is a preliminary study on the drift of SCµM’s
oscillators over temperature, also highlighting the non-linearity
of the frequency tuning. Section IV serves a problem statement
for the paper, by showing that SCµM is unable to maintain
communication with OpenMote under a temperature change
as little as 2◦C. Section V describes the proposed continu-
ous calibration approach, specifically how it sweeps over all
settings to get the initial settings of LC oscillator, how it
computes the frequency offset for the 2 MHz RC oscillator
and the 2.4 GHz LC oscillator, and how it handles the non-
linearity of the frequency tuning. Section VI demonstrates the
correctness of the continuous calibration approach by showing
the frequency settings over time, and evaluates its performance
by analyzing the distribution of IF counts, frequency offset and
2M counts over time. Finally, Section VII concludes this paper
and discusses current and future work.

II. RELATED WORK

This section surveys frequency calibration approaches in
low-power wireless electronics, with a particular focus on
compensating temperature variation.

Ding et al. [10] implement a Frequency Locked Loop
(FLL)-based timer that integrates an on-chip trimming ap-
proach. This allows the timer to self-calibrate over a -40◦C to
80◦C temperature range. Trimming is done using two resistors
in the clock circuit: the clock circuit is able to switch between
the two resistors, resulting two frequencies. By playing with
the duty-cycle of the resistors, the clock compensates for the
change in frequency induced by a temperature change. This
approach results in an 8 ppm/◦C drift.

Marin et al. [11] present a synchronization protocol for
wireless sensor networks, called “Temperature-Aware Com-
pensation (TACO)”. The authors discuss the impact vibration
interference and mismatched capacitors can have on clock
skew, and show how that can be eliminated using proper PCB
design. To model the clock skew over temperature, the authors
manually measure the skew at multiple fixed temperature
points. The clock skew between two adjacent temperature
points is estimated through least square fitting. The sensor
nodes running TACO use their on-board temperature sensor to
continuously compute their clock offset, based on the model
mapping temperature to clock skew. It results a clock skew
below 1 ppm 92% of the time, when the nodes run the TACO
prediction model.

David et al. [12] develop an adaptive synchronization
method for IEEE802.15.4 network to combat the crystal drift
over temperature changes. The approach allows a node in the
network to adjust its clock locally based on the estimated
drift. Since the drift various over the temperature changes, the
proposed approach monitors the temperature through a tem-
perature sensor and re-estimate the drift when the temperature
change exceeds a pre-defined threshold. The result shows that
adaptive synchronization is able to brings a node with 11 ppm
down to 1.5 ppm.
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Borja et al. [13] propose another synchronization approach
for long-term synchronization interval. Instead of simply re-
calculating the drift when temperature change exceeds a
threshold, it maintains a reference drift table at different
temperatures. A fitting model of drift over temperature is
developed based on the table of history drifts recorded at
different temperatures over time. In simulation scenario, the
drift prediction model can manage the accumulated drift over
24 hours within 10 ms, which is about 0.1 ppm.

The major difference between SCµM and the work pre-
sented in [12], [13] and [11] is that they are dealing with
a crystal-based clock, rather than RC or LC oscillators.
Typically, the synchronization approaches presented in these
articles rely on sending a packet to obtain the time offset and
calculates the drift based on the offset. The radio to send the
packet is driven by a crystal clock which has high accuracy.
For SCµM, the LC oscillator needs to be firstly calibrated so
that SCµM can receive and send a standard-compliant packet.
As a result, the synchronization approaches presented in the
related articles can not be applied to the oscillators of SCµM
for transmitting and receiving packet.

Titan et al. [14] present a method to calibrate SCµM for
use as an IoT temperature sensor between 0◦C and 100◦C.
The method finds a linear relationship between the ambient
temperature and the ratio of these two clock frequencies. The
proposed method allow SCµM used as an temperature sensor
with 2◦C errors. This gives the chance for SCµM to calibrate
its radio frequency based on a frequency over temperature
model, which is not presented in the article.

Lee et al. [15] design a 4.19 MHz real-time clock (RTC)
generator that includes temperature compensation. The on-
chip temperature compensation circuit controls the value of
a divider for the output frequency. According to the input
of the on-chip temperature sensor, the logic unit of the
circuit computes the corresponding divider value using a pre-
programmed algorithm model. That model is built offline,
based on the measurements of the divider values over the
temperature range of -40◦C to 60◦C. With this method, the
measured frequency error of the generated clock is managed
to be below 1 ppm over the same temperature range.

Wheeler et al. [16] study the stability of SCµM’s LC oscil-
lator. By placing an early version of the SCµM chip running
a temperature compensation algorithm into a temperature-
controlled chamber, at a constant 25 ◦C, the LC oscillator
drifts by ±40 ppm over 13 hours. This is done using an off-
chip current source and regulator. Over a 50 ◦C temperature
ramp, the LC oscillator drifts by 4,000 ppm. The authors
propose a receiver-based feedback approach to counteract the
impact of temperature changes. Each time SCµM receives a
frame, it monitors the “I” channel samples and counts the zero-
crossings during a 100 µs window. Based on the measured
number of zero-crossings, SCµM adjusts the frequency of the
LC oscillator. We use the same technique in the “continuous
calibration”(CoCa) solution presented in Section V. However,
this is only used for calibrating the frequency during receiv-
ing. The CoCa approach in this paper firstly introduces a
calibration mechanism for 2 MHz oscillator and a “setting
hopping” method to track the frequency over temperature

changes, which are presented in Section V-D and Section V-E.
Suciu et al. [17] provide a calibration technique for SCµM

for both transmission and reception. The LC frequency in-
creases in a non-linear manner with the frequency setting.
The authors first linearize the settings over frequency through
two approaches: recursive least squares (RLS) and moving
average (MA). They sweep the entire linearized range of
frequency settings to find the setting that corresponds to each
of the 16 IEEE802.15.4 channels. They repeat this over the
5◦C to 55◦C temperature range, in 5◦C increments. SCµM
tunes the frequency of its 2.4 GHz LC oscillator based on a
model of the frequency over temperature extracted from those
measurements. Results show that the average frequency drift
on all 16 channels is less than 80 ppm when using the MA
approach, a value close to the target 40 ppm mandated by the
IEEE802.15.4 standard.

The frequency tracking approach proposed in this paper is
a comprehensive calibration approach for SCµM to contin-
uously calibrate the on-chip oscillators (2 MHz RC oscilla-
tor, 2.4 GHz LC oscillator for transmission and reception).
Unlike Suciu et al. [17], our approach does not require to
model a non-monotonic DAC using a monotonic function.
Our approach allows SCµM to keep communicating with
off-the-shelf IEEE802.15.4 devices even when temperature
changes quickly. Unlike the approach in Suciu et al. [17]
which uses linearized settings that vary from chip to chip, our
approach function on all chips without needing chip-specific
pre-calibration. To deal with the non-linear frequency tuning,
we propose a mechanism to constantly “hop” from one setting
to another (see Section V-E).

III. QUALIFYING THE ON-CHIP OSCILLATORS

As a preliminary study, we qualify the on-chip oscillators
used by SCµM for communicating. We look at the frequency
resulting from each frequency settings at room temperature
(Section III-A), and how that frequency changes with temper-
ature (Section III-B).

Fig. 2 is a block diagram of the oscillators, counters and
related radio components. When transmitting, the rate at which
the chips/bits leave the radio is clocked by the 2 MHz RC
oscillator. The frequency of the carrier is set by the 2.4 GHz
LC oscillator. As detailed in Section III-A, both 2 MHz RC
oscillator and 2.4 GHz and LC oscillator are tuned through
independent sets of 3 5-bit registers, called coarse, mid,
fine. The 2M counter and LC counter are clocked by
the two oscillators as a way to measure their frequency.
When receiving, the incoming signal from the antenna is first
demodulated by the I and Q phase match filter and form the
“I” and “Q” channels. The number of zero-crossings on the
“I” channel during a 100 µs window is a way to measure
the value of the intermediate frequency. The IF is generated
through a mixer as a difference between the incoming signal
and the LC oscillator. The low intermediate frequency is used
for monitoring the variation of the clock frequency, instead
of using the 2.4 GHz high frequency. With the IF counter,
SCµM can tell the frequency offset of its 2.4 GHz oscillator
and adjust the oscillator accordingly as detailed in Sec. V-D.
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Fig. 2. The interconnection between the on-chip oscillators, counters and the
related radio components of SCµM.

A. Controlling Frequency using DAC Settings

The frequencies of the 2 MHz RC oscillator and the 2.4 GHz
LC oscillator are controlled by a similar mechanism. For
each, the software running on SCµM controls three DACs
through three 5-bit DAC registers, resulting in 32,768 fre-
quency settings. The DAC is resistive in the case of the
2 MHz RC oscillator, capacitive in the case of the 2.4 GHz LC
oscillator. We call the DAC registers coarse, mid and fine.
We represent a setting as (<coarse>.<mid>.<fine>),
where each element is an integer number in the [0. . . 31] range.

SCµM comes with the necessary digital blocks for the
software to be able to measure the frequency of the oscillators.
Each oscillator is equipped with a counter which increments
each time the oscillator ticks (possibly through a divider).
Software running on SCµM’s Cortex-M0 can read the value
of the counter, and reset it. This allows the software to arm a
timer that fires periodically, and read the value of the counter
each time it fires.

For example, the 2.4 GHz LC oscillator clocks its counter
through a 960× divider: the counter increments every

960
2.4×109 s. This means that, after 1 ms, the counter has
incremented by 2,500 ticks. Assuming the 1 ms period is timed
accurately, reading a counter value different from 2,500 ticks
indicates the LC oscillator is running fast or slow. Similarly,
the 2 MHz RC oscillator when used without divider causes its
counter to increment by 2,000 ticks every 1 ms.

We use SCµM’s 64 MHz RC oscillator to measure the 1 ms
window. While that oscillator is not ideal (non-zero jitter), it
is valid to use it to compare the measured frequency of the
2 MHz RC oscillator against the measured frequency of the
2.4 GHz LC oscillator.

The mechanism above allows us to generate Fig. 3, in which
we measure the frequency of the LC oscillator across all
frequency settings. Fig. 3 shows a portion of that data, from
settings (23.31.0) to (25.0.31). Because of the way
the radio is designed, there is an offset in the frequency of the
LC oscillator depending on whether the radio is configured to

Fig. 3. The LC frequency as a function of the frequency setting, for values
from (23.31.0) to (25.0.31). While the frequency increases with the
frequency setting, the frequency drops when the fine or mid codes overflow,
resulting in a non-linear saw-tooth shape.

transmit or receive. For a given mid code setting, changing
the fine code from 0 to 31 causes the frequency to change
by approx. 2.5 MHz, roughly 80 kHz per fine code.

As shown in Fig. 3, when the mid or fine codes of the
frequency setting roll over from 31 to 0, the frequency drops.
This is designed intentionally to have overlapping codes,
and avoid having frequency “gaps” the LC oscillator cannot
oscillate at. It does, however, make calibration harder, as the
frequency does not monotonically increase with frequency
setting. The 2 MHz RC oscillator exhibits the exact same
behavior.

B. Impact of Temperature on Frequency

We fix the frequency setting for the two oscillators and
measure how their frequency evolves over a 30◦C to 55◦C
temperature range. We use a hair dryer to heat up the SCµM
chip. SCµM reports the measured frequencies of its 2 MHz RC
oscillator and 2.4 GHz LC oscillator over its serial interface.
To measure the temperature at the SCµM chip, we place
an OpenMote [18] next to it. The OpenMote reports the
temperature from its Silicon Labs si70x temperature sensor
every 500 ms over its serial interface. We use a laptop to
record timestamped streams of information from the SCµM
chip and OpenMote board. Although a temperature chamber
would certainly be a more controlled environment, we believe
that our setup is perfectly suitable to show general trends.
Without loss of generality, we consider the frequency at 30◦C
as the reference, and compute drift values against that.

Fig. 4 presents the results for a static 2 MHz RC os-
cillator setting of (22.17.15), and a static 2.4 GHz LC
oscillator setting of (24.10.22) for receiving (RX). The
drift of both oscillators is roughly linear over temperature.
Over a 30-55◦C range, the 2 MHz RC oscillator drifts by
5,000 ppm, the 2.4 GHz LC oscillator drifts by 2,500 ppm
in RX modes. OpenMote, being compliant to IEEE802.15.4,
tolerates a ±1,000 ppm drift on the chip rate. A 2,500 ppm
drift of the LC oscillator corresponds 6 MHz at 2.4 GHz, more
than the 2.5 MHz tuning the fine code from 0 to 31 offers.
Any tuning algorithm will therefore need to control at least
the fine and mid codes.
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(a) 2 MHz RC oscillator

(b) 2.4 GHz LC oscillator (RX)

Fig. 4. Evolution of the frequency of the 2 MHz RC oscillator and the 2.4 GHz
LC oscillator over a 30-55◦C temperature range, when tuned statically to
(22.17.15) and (24.10.22), respectively.

Figure 4 shows that, for SCµM to keep communicating with
OpenMote over a temperature change of 10◦C, SCµM needs
to continuously calibrate both its 2 MHz RC oscillator and
2.4 GHz LC oscillator. The IEEE802.15.4 standard mandates
a maximum drift of 40 ppm on frequency and 1,000 ppm on
chip rate, translating into maximum drift targets for the 2 MHz
RC oscillator and 2.4 GHz LC oscillator, respectively.

IV. PROBLEM STATEMENT AND INTUITION

To demonstrate the problem, we conduct an experiment
with one SCµM chip communicating with one OpenMote.
We pre-calibrate SCµM so it knows the frequency settings
for successful exchange frames with an OpenMote, using a
frequency sweeping mechanism borrowed from [19]. Open-
Mote also measure temperature using its on-board temperature
sensor.

We start the experiment by having SCµM and OpenMote
(successfully) exchanging frame at room temperature. This is
the initial portion of Fig. 5, which shows both the frequency
setting of the LC oscillator (which is constant as no continuous
calibration is done), and the temperature. Note that, because
of how the experiment is set up, the temperature stops being
reported when communication between SCµM and OpenMote

Fig. 5. Showing communication fail when SCµM does not continuously
calibrate its oscillators. We pre-calibrate SCµM to it is able to communicate
with an OpenMote. Each (blue) dot indicate successful communication. After
about a minutes, when turn on a hair dryer pointed at SCµM. Less than 2 s
after turning on the hair dryer, communication stops. As an artefact of how the
experiment is done, the temperature stops being reported when communication
stops.

stops. After about a minute, we turn on an hair dryer pointed
at SCµM and OpenMote. Communication stops 2 s after the
hair dryer is turned on.

The goal of continuous calibration is to keep communication
between SCµM and OpenMote possible even when the tem-
perature changes. To achieve the goal, we need to measure the
frequency error of the 2 MHz RC oscillator and the 2.4 GHz
LC oscillator so the error can be eliminated by tuning the
settings.

V. COCA: CONTINUOUS CALIBRATION

Continuous Calibration (CoCa) is an overall system which
allows SCµM and OpenMote to communicate when tempera-
ture changes. It consists of custom firmware running on both
motes, and implementing a custom communication protocol.
The purpose of this paper is to verify that CoCa works; as
highlighted in Section VII, our current work in integrating
CoCa as a (small) part of a complete standards-compliant
protocol stack.

A. Frames Formats

CoCa uses three types of frames: Beacon, Probe and
ACK. All frames are 10 bytes long and are composed of a 4-
byte preamble, a 1-byte length field, 3 bytes of payload, and
a 2-byte Frame Check Sequence (FCS).

The 1-byte length field is set to 5 and used to filter
the frames of CoCa. We are certain there is no other 5-
bytes long IEEE802.15.4 frame in same experiment field. The
payload field of the Beacon frame consists of a 1-byte field
with the number of seconds remaining in the Beacon burst
(explained below), and two dummy bytes. The payload field
of the Probe frame consists of the characters “C” and “F”
(for “crystal-free”), and a 1-byte field with the number of
milliseconds the OpenMote should wait before sends an ACK
frame. The payload field of the ACK frame consists of a 2-byte
field with the value of the temperature sensor, and a 1-byte
field with the frequency offset of the received Probe frame
(read from the CC2538’s FREQEST register). Because of the
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fact that the value of the payload allows one to distinguish
a Beacon, a Probe and an ACK frame, there is no explicit
“frame type” field.

B. Step 1. Optical Calibration

SCµM features a built-in photo-diode and the necessary
circuitry for optical programming. Without needing to connect
any wires (which would break the “single chip” nature of
SCµM), one programs a SCµM chip by blinking an LED
above it. The blinking pattern is very specific, and consists
of a command word, followed by the bits in the image to
program. Once the firmware is loaded, SCµM resets and starts
executing that image. When executing, that firmware receives
interrupts each time the photo-diode transits from low to high.

We use that last mechanism to provide the very first “coarse”
calibration of the 2 MHz RC oscillator and the 2.4 GHz LC
oscillator. Once optical programming is finished, we modify
the firmware on the external programming board to keep
switching the programming LED on/off 20 times at a fixed
100 ms interval. This blinking pattern generates interrupts on
SCµM. We write the SCµM firmware to read and reset the
counters of the 2 MHz RC oscillator and the 2.4 GHz LC
oscillator at each such interrupt. We use that information to
calibrate both oscillators, based on the knowledge that the
blinking period is exactly 100 ms. The resulting calibration
of the 2 MHz RC oscillator is within the 1,000 ppm target,
as long as temperature doesn’t change. The calibration of the
2.4 GHz LC oscillator is, however, not within the the 40 ppm
target, and therefore does not allow SCµM to communicate
with an OpenMote. The next step, the “frequency sweep”
(Section V-C), is needed to calibrate the 2.4 GHz LC oscillator.

The optical programming can be done in scale by blinking a
LED lamp with large power. So a large amount of SCµM chips
with their optical receivers towards to the lamp can receive the
light at the same time and be programmed. In the current step-
up, we are focusing on single SCµM chip only.

C. Step 2. Frequency Sweep

The goal of the frequency sweep is letting SCµM learn
the frequency settings of its 2.4 GHz LC oscillator that allow
it to communicate (both TX and RX) with an off-the-shelf
IEEE802.15.4 radio such as the OpenMote. Fig. 6 depicts the
frequency sweeping step. It is similar to the approach taken
by [20], but calibrating only a single channel frequency.

This step starts by having the OpenMote send a bust of
Beacon frames on one frequency, one frame every 400 µs,
for 20 s. When the burst ends, the OpenMote keeps listening
for Probe frames from SCµM. If it receives one, it sends
back an ACK frame after the duration indicated in the Probe
frame.

SCµM starts by configuring its radio to receive mode,
and sweeps its LC frequency setting from (23.31.31)
to (24.31.31), listening for Beacon frames. This range
of settings is known to contain the frequency at which the
Beacon frames are sent. Listening for Beacon frames at one
frequency setting takes about 18 ms: 17 ms for stabilizing the
LC oscillator, 1 ms of active listening time. It takes SCµM

18.43 s to sweep through the 1,024 settings. We manually
trigger the OpenMote to send the Beacon frames at the same
time as we have SCµM enter the sweeping step, allowing the
sweep to finish by the time the burst of Beacon frames ends.
SCµM records the best setting on which it received Beacon
frames as its RX frequency setting.

SCµM sweeps through its setting a second time as soon
as the burst of Beacon frames ends. This time, for each
frequency setting, SCµM transmits a Probe frame using that
setting, then uses its RX frequency setting to listen for an
ACK frame. It takes SCµM 3.12 ms to send one Probe
frame: 2.8 ms for stabilizing the LC oscillator, 320 µs for
transmitting the frame. We arbitrarily use value 30 ms for the
delay between the OpenMote receiving a Probe frame and
transmitting the corresponding ACK frame. Including the 1 ms
idle listening duration, it takes SCµM 34.12 ms between two
adjacent Probe transmissions. Sweeping the 1,024 settings
takes SCµM 34.94 seconds. SCµM records the best setting on
which it transmitted a Probe frame and for which it received
an ACK for, as its TX frequency setting.

For TX setting, the “best” is indicated by the frequency
offset (FO). If the frequency setting used for transmitting
packet returns an ACK with smallest FO , that frequency
setting is selected as the “best” setting for TX. For RX setting,
the “best” is selected from groups of settings which can receive
beacons. Those settings are then grouped according to there
coarse and mid settings. The median of the group with the
most settings is selected as the “best” setting for RX. For more
details, please refer to Section IV, Algorithm 1 and 2 in [20].

At the end of the frequency sweep step, SCµM has deter-
mined its 2.4 GHz LC frequency settings for transmitting and
receiving with an OpenMote, on one channel frequency.

D. Step 3a. Frequency Trimming

SCµM uses the frequency settings from step 2 (Section V-C)
to send Probe frames and listen for ACK frames, every 50 ms.
Fig. 7 illustrates frequency trimming, which allows SCµM to
continuously calibrate all oscillators involved with wireless
communication.

To adjust its 2.4 GHz LC oscillator frequency setting for
TX, SCµM reads the frequency offset field from the ACK
frame. The OpenMote is programmed to indicate in that field
the frequency offset of the Probe frame (which it gets from
its FREQUEST register). It then applies (1) to change is fine
code setting, where FO is the frequency offset indicated by the
CC2538 in the ACK frame, which has a null value (no offset)
of 2. One tick in the fine code setting of the 2.4 GHz LC
oscillator causes a frequency shift of 80 kHz. The resolution
of FO is 7.8 kHz: a value of 10 roughly corresponds 80 kHz,
i.e. one tick in the fine code setting.

LC TXfine− = (signed)(FO − 2)/10 (1)

To adjust its 2.4 GHz LC oscillator frequency setting for
RX, SCµM counts the zero-crossing of the IF, as detailed in
Section I. It then applies (2) to change is fine code setting.
Here, IF count is the number of zero-crossings of the IF, 500
is the target value. Each additional IF zero-crossing translates
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Fig. 6. The frequency sweep step of CoCa. The OpenMote sends a burst of Beacon frames on a single frequency, one every 400 µs. SCµM sweeps its
2.4 GHz LC frequency settings from (23.31.31) to (24.31.31), listening for Beacon frames. It records the best setting on which it receives Beacon
frames as its RX frequency setting. After sending the burst of Beacon frames, the OpenMote continuously listens for Probe frames; it sends back an ACK
frame if it receives one. SCµM does a second sweep through its frequency settings, this time sending a Probe frame for each setting and listening for an ACK
frame. It records the “best setting” (detailed in [20]) on which it transmitted a Probe frame it received an ACK for, as its frequency setting for transmitting
(TX). After this, the frequency trimming step (Section V-D) starts.

Fig. 7. SCµM resets its 2 MHz RC counter when it just finished transmitting
the Probe frame. Upon receiving a Probe frame, OpenMote records its
frequency offset (read from its FREQEST register). It then waits exactly 30 ms,
before sending an ACK frame containing the frequency offset. Upon receiving
ACK frame, SCµM reads the value of its 2 MHz RC counter to calibrate
it 2 MHz RC oscillator setting, uses the frequency offset value to calibrate
its 2.4 GHz LC oscillator setting in TX mode, and measures the number of
zero-crossing to calibrate its 2.4 GHz LC oscillator setting in RX mode.

to a 5 kHz frequency shift of the 2.4 GHz LC oscillator; 16
zero-crossings hence correspond to 80 kHz.

LC RXfine+ = (signed)(IF count− 500)/16 (2)

To adjust its 2 MHz RC oscillator frequency setting, SCµM
measures the time between the end of the Probe frame and
the beginning of the ACK frame with that oscillator. It knows
that this duration is 30 ms. It then applies (3) to possible
change its mid code setting. Here, 2M count is the value of
the 2 MHz counter at the start of the ACK frame, 60000 is its

target value corresponding to 30 ms. Increments of the mid
code of 2 MHz RC oscillator frequency setting corresponds to
a frequency shift of 1.93 kHz; The resolution of 2M count is
33.33 Hz: a value of 58 roughly corresponds to 1.93 kHz.

2M RCmid+ = (signed)(2M count− 60000)/58 (3)

To limit the impact of jitter in the oscillators, we use
values for the measured oscillator frequencies averaged over
10 samples,

Table I summarizes CoCa: the oscillators it calibrates, the
corresponding error measurements, the setting it tunes, and the
equation used to calibrate.

We do not calibrate the 64 MHz RC oscillator over tem-
perature during CoCa procedures. However, it only has minor
influence to the accuracy of LC frequency for RX. Assuming
a drift of 5,000 ppm on 64 MHz RC oscillator due to the rapid
temperature changes, this results an error of 0.5 us over 100 us
when counting the IF zero crossing. It introduces 2.5 IF count
error, corresponding to 12 kHz error (5 ppm) in 2.4 GHz LC
oscillator. In a mild temperature changing environment, the
error for LC oscillator of RX caused by the error of 64 MHz
RC oscillator can be ignored.

E. Step 3b. “Hopping“ between Frequency Settings

The frequency of the 2.4 GHz LC oscillator increases with
the fine code of the frequency setting. It is often necessary
to tune the frequency beyond the narrow tuning range the
fine code offers. The challenge is that, as soon as the mid
code increments and the fine code rolls over, the frequency
decrements by 3-4 MHz, causing the SCµM chip to loose
communication with the OpenMote. This has been detailed in
Section III-A.
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TABLE I
THE OSCILLATOR, ERROR MEASUREMENTS CALIBRATION AND EQUATION USED IN THE FREQUENCY TRIMMING STEP OF COCA.

Oscillator Error Measurement Calibration Step Calibration Equation
2 MHz RC Osc. 2 MHz counter value mid Eq. (3)

2.4 GHz LC Osc. (TX) frequency offset (FO) fine Eq. (1)
2.4 GHz LC Osc. (RX) IF zero-crossings count fine Eq. (2)

Fig. 8. SCµM sends Probe frames to OpenMote, one every 50 ms. The
OpenMote sends back an ACK frame that contains the frequency offset and
the temperature. We use a hairdryer to increase the temperature of SCµM.
We place an OpenMote board only 10 cm away from SCµM, and point the
hair dryer at both. This allows us to measure the temperature at SCµM.

To address this roll-over issue, we propose a technique
called “hopping” in which SCµM tracks the LC frequency
using two frequency settings with different mid codes. Fig. 9
shows an example where, at time T1, those settings are
(24.8.22) and (24.9.16). We know that these settings
result in frequencies close enough that they both function,
i.e. the radio is able to receive frames using both. The SCµM
firmware alternates between the two settings, “hopping” from
one to another at each received frame. Frequency trimming is
done on both, independently: the values of both settings evolve
as temperature changes.

We blacklist the 5 frequency settings around the point
where the mid code increments, i.e. any frequency setting be-
tween coarse.mid.30 and coarse.mid+1.2. We want
to avoid these regions as they are highly non-linear. When
one of the two frequency settings falls in the blacklisted
settings, its value is replaced by a new frequency settings
24 fine codes away from the second setting. The value 24 is
determined experimentally. The exact same approach is used
on the 2.4 GHz LC oscillator TX setting.

The goal of the blacklist is to notify SCµM to “hop” to
another frequency setting in advance before the fine code
rolls over. A larger frequency setting blacklist increases the
safe window size to be notified. There are two factors affect the
size of the setting blacklist. A larger frequency setting blacklist
is required when: the temperature changing rate increases, or
the Probe sending rate decreases. The quantitative analysis
of the blacklist size with the temperature changing rate and
the Probe setting rate is out of scope of this paper.

In case a rapid temperature changing causes CoCa loses

its communicating frequency, the frequency sweep presented
previously can be triggered to restart the calibration process.
At the end of frequency sweep, the frequency trimming
procedure starts again.

F. A Summary of CoCa

For summarizing, CoCa relies on 3 types of frames to
be exchanged between SCµM and OpenMote (Section V-A).
CoCa starts by a vert coarse calibration of the oscillator
as part of the optical bootloading process (Section V-B).
By sweeping through frequency settings, CoCa further fine-
tunes the frequency of the 2.4 GHz LC oscillator, allowing
SCµM and OpenMote to communicate at a constant tem-
perature (Section V-C). From then on, when sending frames
and receiving acknowledgements from an OpenMote, SCµM
keeps track of the frequency of the 2 MHz RC oscillator,
the IF, and the frequency offset (FO) in the payload of the
acknowledgement. It uses this information to continuously
adjust the frequency settings, a process we call “frequency
trimming” (Section V-D). The CoCa calibration procedure
requires to be done every time when SCµM boots after the
optical programming.

G. Energy Consumption

SCµM operates at 1.5 V. It consumes 847 µW while
transmitting, with an output power of -10 dBm, and 1.03 mW
while receiving, with a sensitivity of -83 dBm [1]. In Step
2 (Sec. V-C), intensive Beacon, Probe and ACK frames
are received/sent over 2,048 settings and 1,024 settings for
calibrating one channel frequency of RX and TX. For each
frame to send or receive consumes about 0.35 µC. Hence
the whole frequency sweep process consumes 0.35× 2048 +
(0.35 + 0.35) × 1024, about 1.43 mC. For a typical coin
cell battery holding 225 mAh of capacity, this step consumes
0.000176% and it’s done once per life time. In Step 3a
(Sec. V-D), Probe and ACK are sent and received to track
the frequency error every one second. For a 225 mAh battery,
this step consumes 0.000864% of its capacity. With a faster
sending rate of Probe, the consumption increases. However,
one Probe per seconds has been proved that it can handle a
temperature changing rate of 3◦C/min, which is much faster
comparing to daily temperature changes.

These calculation is estimated in ideal case that the radio
can be turned off and turned on immediately when it’s needed.
As indicated in Sec. V-D, a 30 ms round time requires for
SCµM to keep the radio on, which consumes a major mount of
energy. To the state of the work, SCµM requires mili-seconds
duration to stabilize its oscillator to have radio functioning.
Also there is a 150-200µA leaking current from SRAM and
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Fig. 9. We blacklist all frequency settings in ranges (coarse.mid.30) and (coarse.mid+1.2). At time T1, the radio hops between RX frequency
settings (24.8.22) and (24.9.16). Frequency trimming is used on both independently; at time T2, trimming causes the the settings to evolve to
(24.8.30) and (24.9.25). Since setting (24.8.30) falls in the blacklisted settings, it is replaced by a setting 24 fine code above the other setting,
i.e. (24.10.17).

Fig. 10. Evolution of the frequency setting of the 2.4 GHz LC oscillator in
RX as the SCµM chip is heated up using a hair dryer, then cools down.

analog circuits which can’t be shutoff in this revision. Those
issues need to be resolved in the future revision of SCµM.

VI. EVALUATION

We start by introducing the experimental setup used to eval-
uate the performance of CoCa (Section VI-A). Section VI-B
discusses the experimental results which show that CoCa
allows SCµM to keep communicating with an OpenMote even
under the extreme condition of it being heated by a hair dryer.

A. Experimental Setup

The experimental setup is depicted in Fig. 8 and consists
of a SCµM chip, an OpenMote board, and a laptop for data
recording. SCµM is programmed with CoCa1.

We use a hair dryer to increase the temperature of SCµM.
We place the OpenMote only 10 cm away from SCµM and
aim the hair dryer at both motes so they have roughly the
same temperature. The OpenMote measures and reports tem-
perature. When the hair dryer is switched on, the temperature

1 As an online addition to this paper, the source code of CoCa is published
under a BSD open-source license at https://github.com/PisterLab/scum-test-
code

Fig. 11. Evolution of the frequency setting of the 2.4 GHz LC oscillator in
TX as the SCµM chip is heated up using a hair dryer, then cools down.

Fig. 12. Frequency setting of the 2 MHz RC oscillator as temperature changes.

of the motes rises from 26◦C to 41◦C in 5 min, a 3◦C/min
temperature ramp.

We connect a laptop to the serial interface of SCµM and
have SCµM report the frequency offset (FO) and temperature
values received from the OpenMote, and the frequencies
measured of the 2 MHz RC oscillator and 2.4 GHz LC
oscillator, and their current frequency settings.
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Fig. 13. The number of IF zero-crossings over time (left) and the corresponding distribution (right). 94.69% of the measurements fall within the ±40 ppm
range mandated by the IEEE802.15.4 standard.

Fig. 14. The frequency offset (FO) evolving over time (left) and the corresponding distribution (right). 98.67% of the measurements fall within the ±40 ppm
range mandated by the IEEE802.15.4 standard.

Fig. 15. The 2 MHz count evolving over time (left) and the corresponding distribution (right). 99.98% of the measurements fall within the ±1,000 ppm
range mandated by the IEEE802.15.4 standard.

B. Experimental Results

Fig. 10 shows the frequency setting of the 2.4 GHz LC
oscillator in RX changing with temperature. Each blue dot
corresponds to an ACK frame received from the OpenMote.
Because SCµM hops between frequency settings, these dot
form two parallel “lines”. The red line represents temperature.
At minutes 5, 7 and 14, one of the frequency settings enters
the blacklisted settings and is shifted.

Fig. 11 is similar to Fig. 10, showing the frequency setting
of the 2.4 GHz LC oscillator in TX. Here again, frequency
settings are shifted at minutes 8 and 13.

Fig. 12 shows frequency setting of the 2 MHz RC oscillator
as temperature changes. Each time the frequency of the 2 MHz
RC oscillator needs to adjust, one mid code of its frequency
setting is incremented or decremented.

We evaluate the performance of CoCa by gathering the
frequency offsets of the 2 MHz RC oscillator and the 2.4 GHz
LC oscillator, measured by the techniques details in Section I.
The left side of Fig. 13 shows the number of IF zero-crossings
over time; the right plots the corresponding distribution. An
offset of 19 from the ideal IF zero-crossings value of 500
corresponds to approx. 40 ppm, the target drift mandated by
IEEE802.15.4. Fig. 13 shows that 94.69% of the IF zero-
crossings fall within that range.

The left side of Fig. 14 shows the frequency offset (FO)
over time; the right plots the corresponding distribution. An
offset of 12 corresponds to the target ±40 ppm maximum drift.
The distribution shows that 98.67% of the measurements fall
within that range.

The left side of of Fig. 15 shows the 2 MHz count over
time; the right plots the corresponding distribution. An offset
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of 60 corresponds to the target ±1,000 ppm maximum drift.
The distribution shows that 99.98% of the measurements fall
within that range.

Though the experiment is conducted under an environ-
ment within 30-55◦C temperature range, there should be no
constrain to apply “CoCa” over a commercial temperature
range, i.e. -40-85◦C. Actually, “CoCa” is more sensitive to
the temperature changing rate rather than changing range. To
handle a faster temperature changing rate situation, the faster
Probe sending rate is needed to notify on-time when the
setting reaches to the setting blacklist area. So that SCµM can
“hop” to another frequency setting in advance before losing
the frequency. For a daily temperature changing rate which is
much slower than 3◦C per minute, SCµM can keep its radio
on the right frequency with “CoCa” without constrain.

VII. CONCLUSIONS

This paper introduces a technique called “CoCa” allowing
SCµM to continuously calibrate its 2 MHz RC oscillator and
2.4 GHz LC oscillator. We first obtain an initial calibration
of the 2 MHz RC oscillator by having the programming
board blink its LED periodically after the optical bootloading
process. By sweeping the frequency settings of the 2.4 GHz
LC oscillator twice, we allow SCµM to communicate with
an OpenMote, albeit at a single frequency and a constant
temperature. By continuously measuring the frequencies of
the oscillator, and getting feedback from the OpenMote of the
offset of the SCµM transmit frequency, SCµM continuously
trims the frequency as temperature changes. To cope with
the saw-tooth shape of the frequency profile, SCµM hops
between two frequency settings, and shifts two intermittently
to avoid highly non-linear region of the frequency settings. The
results shows that the 2 MHz RC oscillator stays within the
±1,000 ppm range mandated by the IEEE802.15.4 standards
99.98% of the time, and that the 2.4 GHz LC oscillator stays
within the ±40 ppm range 98.67% and 94.69% of the time
(for TX and RX, respectively.).

The implication of results are significant. CoCa allows
a mote with a grain-of-rice size to participate in an
IEEE802.15.4 network, relying exclusively on its on-chip
oscillator. This fact brings up one step closer to the “Smart
Dust” vision.

Of course, this paper focuses on verifying an approach such
as CoCa works. The system doesn’t attempt doing more than
just this continuous calibration. The long-term goal for this
work is to have SCµM run a full protocol stack such as
the 6TiSCH [21] fully standards-based Industrial IoT protocol
stack. we are currently working on integrating CoCa into
the 6TiSCH protocol and its implementation on SCµM. This
includes standardizing a new Information Element, so the
frequency offset can be carried in an ACK frame in a standards-
compliant manner.
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